T

GAME-BASED LEARNING: ITS EFFECTS ON STUDENTS'

PERFORMANCE IN PHYSICS

A Thesis Presented to the

Faculty of the Graduate School

College of Education

West Visayas State University

La Paz, Iloilo City

In Partial Fulfilment

of the Requirements for the Degree

Master of Arts in Education

(Physics)

by

Rea A. Agustin

March 2018

Г

APPROVAL SHEET

A Thesis for the Degree

Master of Arts in Education

(Physics)

by

Rea A. Agustin

Approved by the Research Committee:

CHIVE G. GABASA, Ph. D., Chairperson

ELVIRA L. ARELLANO, Ph. D., Member

LOURDES N. MORANO, Ph. D., Outside Expert

AGATHA Z. SENINA, Ph. D., Adviser

HILDA C. MONTAÑO, Ed. D., RGC Dean

March 2018

L

ר

Iloilo City

٦

L

Г

Agustin, Rea A. "Game-Based Learning: Its Effects on Student's Performance in *Physics"*. Unpublished Thesis, Master of Arts in Education (Physics), West Visayas State University, Iloilo City, March 2018.

Abstract

This quasi-experimental research was conducted to determine the performance of 80 grade 8 students in Physics class. A total of two (2) sections with forty (40) students each were utilized for this study. One section (40 students) was the experimental group exposed to game-based learning and the other section was the control group exposed to inquiry-based instruction in Physics. The choice whether a certain group was subjected to game-based or inquiry-based instruction was done through the toss-coin method. This pretest-posttest method of research utilized a 60-item researcher-made test in Physics. The statistical tools used were mean and standard deviations for descriptive statistics and t-test for independent and dependent samples for 0.05 alpha level for inferential statistics. The findings showed that students were Fairly Satisfactory in terms of the level of their performance in Physics before the intervention has been made. After the intervention, the performance of both the experimental group and the control group became Satisfactory. No significant difference existed between the pretreatment performances and post-treatment performances of the experimental and control group. However, significant differences were noted between the pre- and posttreatment performances of each group. Moreover, the study revealed no significant

vii

٦

Г

difference in the mean gain performance between experimental group and control group. This implied that both of the interventions have a positive effect on students' performance in Physics. Furthermore, the study showed that learning experiences of the students in the

experimental group varies with the controlled group. However, learning experiences of

students from either group showed that the intervention was helpful and beneficial to

them.

L

Iloilo City

L

TABLE OF CONTENTS

	Page
Title Page	i
Approval Sheet	ii
Acknowledgment	iii
Abstract	vii
Table of Contents	İX
List of Tables	xii
List of Figures	xiii
List of Appendices	xiv

Chapter

L

1	INTRODUCTION TO THE STUDY	1
	Background and Theoretical Framework of the Study	2
	Statement of the Problem and the Hypotheses	7
	Definition of Terms	8
	Significance of the Study	10
	Delimitation of the Study	12
2	REVIEW OF RELATED LITERATURE	13
	Inquiry-based Teaching and Learning	15
	Teaching Science as Inquiry	18

Г

4

L

Iloilo City

J

	History of Game-Based Learning	23
	Definition of Game-Based Learning	24
	The Game-Based Learning Approach	27
	Researches about Game-Based Learning	34
	Summary	43
3	RESEARCH DESIGN AND METHODOLOGY	45
	Research Design	46
	Methodology	47
	The Participants	47
	The Instruments	48
	Data Collection Procedure	50
	Statistical Data Analysis Procedure	53
	RESULTS AND DISCUSSIONS	56
	Descriptive Data Analysis	56
	Pre-test and Post-test Scores in Physics	56
	Inferential Data Analysis	58
	Difference in the Pre-test Scores in Physics	59
	Performance of the Experimental and Control Group	60
	Difference in the Post-test Scores in Physics	61
	Difference in the Mean Gains Between the Experimental and Control Groups	63

Г

L

	Learning Experiences of the Students' in the Experimental Group	65
	Learning Experiences of Students in the Control Group	71
5	SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	75
	Summary of the Problem, Method, and Findings	75
	Conclusions	78
	Implications	79
	Recommendations	81
References		83
Appendices		89

J

lloilo City

LIST OF TABLES

٦

L

Table		Page
1	Distribution of Participants	48
2	Pre-test and Post-test Performance of Students Exposed to Game-Based and Inquiry-based Instructions	58
3	Significant Difference in the Pre-test Performance of Students Exposed to Game-Based Learning and those Exposed to Inquiry-based Instruction	59
4	Significant Difference in the Post-test Performance of Students Exposed to Game-Based Learning and those Exposed to Inquiry-based Instruction	61
5	Significant Difference in the Pre-test and Post-test Performance of Students Exposed to Game-Based Learning and those Exposed to Inquiry-based Instruction	62
6	Mean Gain Performance in Physics of Students Exposed to Game-Based Learning and those Exposed to Inquiry-based Instruction	63
7	Significant Difference in the Mean Gain Performance in Physics of Students Exposed to Game-Based Learning	64
8		
9	After Playing Games. I Feel	68
10	Did playing games help you in your Science class?	69
11	Results	70
12	The part of the lesson that I like the most isthat I liked the least	73

Iloilo City

LIST OF FIGURES

Figure		
1	Conceptual paradigm showing the hypothesized relationships between the independent and the dependent variables	6
2	Quasi-experimental Pretest-Posttest Design	46
3	Students' Preferences in Playing Games	67

Г

LIST OF APPENDICES

ı

Appendix		Page
Α	Letter to the Validator	90
В	Letter to the School Head for the Conduct of the Study	92
С	Letter to the School Head for the Conduct of Pilot Testing of Instruments	94
D	Letter to the School Allowing the Panel Members to Observe The Class	96
Ε	Parents' Consent Form	98
F	Student's Consent Form	101
G	Table of Specifications	104
Н	Sample Test Items of the 60-Item Test	109
Ι	Sample Answer Sheet	112
J	Results of the Reliability Test of the 60-Item Multiple-Choice in Physics	114
К	Sample Lesson Plan	116
L	Sample Game	119
м	Sample Laboratory Activity	121
N	Calendar of Activities	124
0	Pretest-Posttest Result	130
Ρ	SPSS Results	134
Q	Sample of Students' Reflection Journal	ار ¹³⁹

Iloilo City

R	Sample of classroom Observation Report	141
S	Sample of Transcript of the FGD	143
Т	Photographs	145

Г

٦

References

- Abellar (2012). Addressing the challenges of inquiry-based learning through technology and curriculum design. *The Journal of the Learning Sciences*, 8(3-4), 391–450.
- Abrams, E., Southerland, S.A., & Silva, P.C. (2008). *Inquiry in the classroom: Realities and opportunities*. Information Age Publishing.
- Amazigo, S.C & Zuiker, W. Situationally embodied curriculum: Relating formalisms and contexts. Science Education 91 (5), 750-782, (2000).
- Ang, J. (2012). students' science skills and knowledge in guided and open inquiry-based learning. Unpublished master's thesis. West Visayas State University, Iloilo City, Philippines.
- Annetta, J.(2009). Benchmarks for science literacy. New York: Oxford University Press.
- Ardales, V., (2008). Basic concepts and methods in research (3rded.). Educational Publishing House, Manila, Philippines. ISBN#978-971-513-245-9
- Arthur, D., (2004). The Effect of Inquiry-based instruction on Students' Participation and Attitudes in a Third Grade Science Classroom. (Master's thesis). University of Central Florida, Orlando, Florida, 2005
- Avedon, L.A. & Minogue, J. Investigating the Impact of Video Games on High School students' engagement and learning about genetics. Computers and Education, 53 (1) 74-85.

Г

Baker, (2002). The —classroom flip[]: Using web course management tools to become the guide on the side. In 11th International Conference on College Teaching and Learning, 2000.

- Carpina, J. (2014). *Inquiry's allure and illusion: Why it remains just beyond our reach.* Paper presented at the annual meeting of the National Association for Research in Science Teaching, Philadelphia, PA.
- Darnell, J. (2001). Games in Classroom. Retrieved from

http://jasonohler.com/index.cfm

Department of Education. (2013). K to 12 curriculum guide: Science. Philippines: Author

Department of Education. (2013). K to 12 curriculum guide: Science.

- Dewey, J. (1963). Democracy and Education: An Introduction to the Philosophy of Education, (New York, The Macmillan company, c1916,1917, 1921).
- Dubbels, D.J.Engaging Students in active learning. Journal of Educational Psychology, 92. 724-733. (2007)

EdTech Review. (2013). ISTE standards for teachers. Retrieved from

http://www.iste.org/standards/ISTE-standards/standards-for-teachers

Editorial Team. (2013). Retrieved from http://www.iste.org/standards.aspx

- Educational Corporation (Singer, S. & Hilton, M.L.). Investigations in high school science. Washington, DC: National Academies Press. 2014
- Eggen, P., & Kauchak, D. (1996). Exploring science in the elementary school. Chicago:Rand McNally College Publishing

L

85

Г

86

Gee, J.P., Video Games: What They Can Teach Us About Audience Engagement. Nieman Reports, 52-54. (2010)

Gray, P. & Chiappe. Improving Multi-Tasking Ability through Action Video games, 2001.

 Harris, M., (2009). Investigation into the Effectiveness of an Inquiry-based Curriculum in an Introductory Biology Laboratory. (Master's thesis) A published Master of Science Teaching Thesis, University of Maine

Hassard, J. (2005). *The Art of Teaching Science*.New York: Oxford University Press.
Lederman, N.G. (2004). In L. B. Flick & N. G. Lederman (Eds.), *Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education*.
Dordrecht: Kluwer Academic Publishers.

Henry, K. Designing Centers of Expertise for Academic Learning Through Video Games. Theory Into Practice. 47, 240-251. (1996).

Kieman, D. A.(2015). Inquiry-Based Teaching in the College Classroom: The Nontraditional Student. (Doctoral dissertation). Retrieved from http://scholarcommons.sc.edu/etd/3169

- Kirikkaya, Iseri & Vurkaya. What Video Games Have to Teach Us About Learning and Literacy, 2015.
- Lamanna, S. M. (2010). *Inquiry-Based Learning and Student Retention*.(Master's thesis). Education and Human Development, Paper 13.
- Lederman, N.G. (2004). In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education.

Г

87 **ר**

Dordrecht: Kluwer Academic Publishers.

- Ling Gen Shan. Transformational Play as A Curricular Scaffold: Using Video games to support science education. Journal of Science Education and Technology 18, 305-320. (2009).
- Ling Gen Shan. The Effect of Video Games on learning Outcomes of Biology and Interest Towards Biology. (2013)

Mc Laughlin, & Talbert, J.T. (1993).What is collaborative learning? In M. Maher A.M. Goodsell and V. Tinto, editors, *Collaborative Learning: A sourcebook for higher education,* (10-30). National Center on Postsecondary Teaching, Learning and Assessment, 1992.

- Merriam-Webster's collegiate dictionary (10thed.). (1993). Springfield, MA: Merriam-Webster
- Ornstein, R.E. A theory of fun for game design (1st ed.) Phoenix, AZ, Paraglyph Press.(2009)
- Oyedeji, D. A Pedagogy of Multiliteracies; Designing Social Futures. Harvard Educational Review, 66(1), 1-14. (1992)

Papastergiou, Marina. Digital Game-Based Learning in High School Computer Science Education: Impact on Educational Effectiveness and Student Motivation. *Computers & Education*, January 2009, Vol. 52, No. 1, 1-12. doi: http://dx.doi.org/10.1016/j.compedu.2008.06.004

Prensky, M. (2001). Digital game-based learning. New York: McGraw Hill.

Iloilo City

Г

- Taganahan, R. (2014). Concept maps as assessment in science inquiry learning: A report of methodology. *International Journal of Science Education*, 22(12), 1221– 1246.
- Shaffer, D., Squire, K., Halverson, R. & Gee, J.P. Educational and Social Benefits of Digital Games. (2012).
- Schultz, C. Learning and Leading with Technology, 34 (6), 30-33
- Suchman, R.J. (1966). Developing Inquiry. Chicago: Science Research Associates.
- Van Eck, R. N. (2013). Building Games from Scratch by Educators and Programmers.
- Vygotsky, L.S. (1978). *Mind and society: The development of higher mental processes*. Cambridge, MA: Harvard University Press

Wang, P., Yen, Y., Wu, H., & Wu, P. (2013). *The Learning Effectiveness of Inquiry-based Instruction Among Vocational High School Students*. Center for Teacher
 Education, Cheng-Shiu University, Educational Research International IS ISSN-L: 2307-3713, ISSN: 2307-3721 Vol. 2 No. 2

Wenglinsky, R.(2001). *Inquiry and the National Science Education Standards*. Washington, DC: National Academy Press.

Young, A. (2013). Teachers' understandings of an inquiry and reported use of scientific practices: A survey of NSTA conference attendees. Master's thesis.University of Maine.

88