Show simple item record

dc.contributor.authorUnajan, Magdalene C.
dc.contributor.authorGerardo, Bobby D.
dc.contributor.authorMedina, Ruji P.
dc.contributor.editorAo, S. I.
dc.contributor.editorCastillo, Oscar
dc.contributor.editorDouglas, Craig
dc.contributor.editorFeng, David Dagan
dc.contributor.editorKorsunsky, A. M.
dc.date.accessioned2022-03-14T08:05:12Z
dc.date.available2022-03-14T08:05:12Z
dc.date.issued2019-03-13
dc.identifier.citationUnajan, M. C., Gerardo, B. D., & Medina, R. P. (2019). A modified otsubased image segmentation algorithm (OBISA). In S. I. Ao, O. Castillo, C. Douglas, D. D. Feng, & A. M. Korsunsky (Eds.), Lecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineers and Computer Scientists 2019, IMECS 2019, 13-15 March, 2019, Hong Kong (Vol. 2239, pp. 363–366). Newswood Limited.en
dc.identifier.isbn9789881404855
dc.identifier.issn2078-0958
dc.identifier.urihttp://repository.wvsu.edu.ph/handle/123456789/82
dc.description.abstractImage thresholding is usually a preprocessing step in a number of image processing algorithms. The segmented images are input for image analyses, computer vision, and visualizations and object representation. Otsu thresholding method is a widely used image thresholding technique. It provides fairly accurate results for segmenting a gray level image with only one modal distribution in a gray level histogram. However, one of the drawbacks is high computational cost and noise that are mostly contributed by inappropriate expression of class statistical distributions. This paper presents an improved Otsu-based image segmentation algorithm to enhance the performance of the Otsu method. Standard deviation is used in the computation of the optimal threshold instead of using variance. A reasonable threshold range is computed to lower the computational cost. Testing results showed that the improved method is more satisfactory than the original Otsu thresholding algorithm.en
dc.publisherNewswood Limiteden
dc.relation.uri
dc.subjectimage analysisen
dc.subjectsegmentationen
dc.subjectstatistical distributionen
dc.subjectthresholdingen
dc.subject.lcshComputer algorithmsen
dc.subject.lcshImage processing--Digital techniquesen
dc.subject.lcshImage analysisen
dc.subject.lcshImage enhancementen
dc.subject.lcshComputational costsen
dc.subject.lcshImage processing algorithmen
dc.subject.lcshImage segmentation algorithmen
dc.subject.lcshImage thresholding
dc.subject.lcshObject representations
dc.subject.lcshPre-processing step
dc.subject.lcshImage segmentationen
dc.titleA modified Otsu-based image segmentation algorithm (OBISA)en
dc.typeConference paperen
dcterms.accessRightsOpen accessen
dc.citation.volume2239
dc.citation.firstpage363en
dc.citation.lastpage366en
dc.identifier.essn2078-0966
dc.citation.conferencetitleLecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineers and Computer Scientists 2019, IMECS 2019, 13-15 March, 2019, Hong Kongen
local.isIndexedByScopusen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record