THE DEVELOPMENT OF CONTEXTUALIZED MODULE IN GENERAL MATHEMATICS

FOR AGRICULTURE STUDENTS

A Thesis Presented to the Faculty of the Graduate School College of Education West Visayas State University La Paz, Iloilo City

In Partial Fulfilment of the Requirements for the Degree Master of Arts in Education (Mathematics)

by

Reeann B. Dailo

January 2021

APPROVAL SHEET

A Thesis for the Degree

Master of Arts in Education

(Mathematics)

by

Reeann B. Dailo

Approved by the Research Committee:

JONATHAN C. GLORIAL, Ph. D., Chairperson

RICKY M. MAGNO, Ph.D., Member

NANET T. TADIA, Ph.D., Outside Expert

ROSEMARIE G. FELIMON, Ph. D., Adviser

PETER ERNIE D. PARIS, Ph. D. Dean

January 2021

Dailo, Reann B. "The Development of Contextualized Modules in General Mathematics for Agriculture Students." Unpublished Graduate Thesis. Master of Arts in Education (Mathematics). West Visayas State University, College of Education, La Paz, Iloilo City, January 2021.

Abstract

This developmental research aimed to develop a contextualized module in general mathematics for agriculture students. The progress was based on the Analyze, Design, Develop, Implement, and Evaluate (ADDIE) Model. The "analyze," "design," and "develop" stages were accomplished using the data gathered from the interviews with two general mathematics teachers and two agriculture teachers from two different public schools in Leon, Iloilo. Agriculture is incorporated through the integration of agriculture on topic contents (functions, piecewise function, rational functions, equations, and inequalities, exponential functions, equations, and inequalities, and logarithmic functions, equations, and inequalities), contextualized problem-based learning activities and examples, authentic assessment of learning and inclusion of agriculture directly experienced by students as motivation. For the implementation stage, the learning module was pilot tested in Grade 11 agriculture students composed of 33 students. The evaluation stage involved the experts' rating of the material's activity and students' satisfaction. Mean, and standard deviation were used in the analysis. The result showed that the developed module was highly acceptable, and the students were also highly satisfied. The module was appropriate material with

İΧ

agriculture integration in the classroom. Experimental studies may be done to ascertain

the developed module's effectiveness.

٠

TABLE OF CONTENTS

	Page
Title Page	i
Approval Sheet	ïi
Acknowledgment	iii
Abstract	viii
Table of Contents	ix
List of Tables	xiii
List of Figures	xIv
List of Appendices	xv

Chapter

1	INTRODUCTION TO THE STUDY	1
	Background of the Study	2
	Theoretical and Conceptual Framework of the Study	5
	Paradigm of the Study	6
	Statement of the Problem	7
	Definition of Terms	7
	Delimitation of the Study	9
	Significance of the Study	10
2	REVIEW OF RELATED LITERATURE	12
	Contextualization and Its Benefits	12

	The Links among Mathematics, Contextualization and Agriculture	19
	Module Development	24
	Summary	32
3	RESEARCH DESIGN AND METHODOLOGY	34
	Research Design	34
	Methodology	35
	Phase I - Preliminary Investigation	35
	Phase II - Data Collection Procedure	40
	Phase III - Data Analysis Procedure	44
4	RESULTS AND DISCUSSIONS	49
	Agriculture lessons that could be integrated in General Mathematic	s 50
	The Agriculture Integrated Module	60
	Acceptability of the Module	68
	Students' Satisfaction of the Module	75
5	SUMMARY, CONCLUSIONS, IMPLICATIONS AND RECOMMENDATIONS	82
	Summary of the Problem, Method, and Findings	82
	Conclusions	84
	Implications	85
	Recommendations	86
Re	References 8	
Ap	pendices	101

LIST OF TABLES

Table		Page
1	Agriculture lessons in general mathematics	59
2	Acceptability rating of Contextualized Module in General Mathematics for Agriculture Students in terms of Physical Aspects	69
3	Acceptability rating of Contextualized Module in General Mathematics for Agriculture Students in terms of Objectives	70
4	Acceptability rating of Contextualized Module in General Mathematics for Agriculture Students in terms of Learning Activities	72
5	Acceptability rating of Contextualized Module in General Mathematics for Agriculture Students in terms of Evaluation Procedure	73
6	Acceptability rating of Contextualized Module in General Mathematics for Agriculture Students in terms of Contextualization	74
7	Overall Acceptability Rating of the Contextualized Module in General Mathematics for Agriculture Students	75
8	Students' Satisfaction of the Contextualized Module in General Mathematics for Agriculture Students in Terms of Physical Aspects	76
9	Students' Satisfaction of the Contextualized Module in General Mathematics for Agriculture Students in Terms of Learning Activities	78
10	Students' Satisfaction of the Contextualized Module in General Mathematics for Agriculture Students in Terms of Evaluation Procedure	79
11	Students' Satisfaction of the Contextualized Module in General Mathematics for Agriculture Students in Terms of Relevance to Agriculture	80
12	Overall Students' Satisfaction Rating of the Contextualized Module in General Mathematics for Agriculture Students	81

LIST OF FIGURES

Figure		Page
1	The Paradigm of the Study	6
2	The Research Procedure	41
3	An example on basic calculations in functions	51
4	An example on division of irregular field into regular areas	53
5	Graphing rate of the growth of a corn plant	56
6	Exponential function problem which involves horticulture	57
7	Suggested learning activity	58
8	The outline of the topics for the contextualized module in General Mathematics for agriculture students and its parts	61
9	The envision part of the module	62
10	The engage part of the module	63
11	The explore part of the module	64
12	The experience part of the module	65
13	The evaluate part of the module	66
14	The agri-fact part of the module	67

LIST OF APPENDICES

App	endix		Page
	А	Letter for the Teachers	102
	В	Consent Form of Teachers	104
	С	Letter for the Experts	106
	D	Experts' Evaluation Form	108
	Е	Interview Schedule for Math Teachers	112
	F	Interview Schedule for Agriculture Teachers	115
	G	Guide for Document Analysis	118
	Н	Students' Satisfaction Survey Form	120
	I	Letter for Validators	124
	J	Letter for the Principal	126
	К	Sample Accomplished Document Analysis Guide	128
	L	Thematic Map of Agriculture Lessons in General Mathematics	132

90

References

 Abu Bakar, M. B., & Cheng, C. M. (2017). The impact of using modules in the teaching and learning of english in Malaysian polytechnics: An analysis of the views and perceptions of English language teaching. Jabatan Pengajian Am, Politeknik Melaka, Jebatan Politeknik, Kementerian, Pendidikan, Malaysia.
 <u>http://www.polimelaka.edu.my/portalpmk/images/images/JPA/research/cmc_ma_b.pdf</u>

ADB. 2011. Country Partnership Strategy: the Philippines, 2011-2016. Manila.

Adedayo, R.O. (1999). Agricultural economics for colleges and secondary schools.

Ado-Ekiti, Adedayo Printing Nigeria Limited. 65-171.

- Ajai, I. J. & Imoko, T. B. (2011). *Mathematics as a tool for sustainable national development and for addressing Nigerian challenges in the 21st century*. Nasher Journal 9(2) 95-101. https://scholar.google.com/citations?
- Akissani, I. & Muntari, I. (2015). The role of mathematics in agricultural development. In Sadiku, J.S (ed.) Proceedings of September 2015 Annual National Conference of Mathematical Association of Nigeria (M.A.N.). 317-324.

https://docplayer.net/154269690-Abacus-mathematics-education-series-vol-42no-the-role-of-mathematics-in-crop-production-technologies-implications-forextension-delivery.html

Anderson, R. & Anderson, S. (2012). Emerging Themes in Integrating Mathematics into Agricultural Education: A Qualitative Study of Star Teachers in Virginia. Journal of Career and Technical Education, Volume 27, Number 2, Winter, 2012. https://scholar.google.com.ph/scholar?g=Anderson+2012,+Emerging+Themes+i n+Integrating+Mathematics+into+Agricultural+Education&hl=en&as_sdt=0&as_vis=1&oi=scholart

Ayeni, A. A., Babatunde, A. & Fadare, A. O. (2015). Enhancing the teaching and learning of commercial mathematics for entrepreneurship skills development. A paper presented at the 5th Annual National Conference of School of Sciences, Federal College of Education (Special), Oyo, Oyo State.

https://www.iiste.org/Journals/index.php/JNSR/article/viewFile/26516/27190

Baker, E. D., Hope, L., & Karandjeff, K. (2009). Contextualized teaching and learning: A faculty primer. Sacramento, CA: The Research and Planning Group for California Community Colleges, Center for Student Success. Retrieved from http://www.careerladdersproject.org/docs/CTL.pd

Becker, M., McElvany, N., & Kortenbruck, M. (2010). Intrinsic and extrinsic reading motivation as predictors of reading literacy: A longitudinal study. Journal of Educational Psychology, 102(4), 773–785. DOI: 10.1037/a002008. https://www.researchgate.net/publication/48207370_Intrinsic_and_Extrinsic_Rea ding_Motivation_as_Predictors_of_Reading_Literacy_A_Longitudinal_Study

92

Berns, R. G. & Erickson, P. M. (2001). *Contextual teaching and learning: Preparing students for the new economy*. The Highlight Zone: Research. https://files.eric.ed.gov/fulltext/ED452376.pdf

 Black, H., Govinda, R., Kiragu, F. & Devine, M. (1993). School Improvement in the Developing World: An Evaluation of the Aga Khan Foundation Programme. SCRE Research Report, no. 45; DFID Evaluation Report EV545. Scotland: The Scottish Council for Research in Education. https://books.google.com.ph/books?id

Boroch, D., Fillpot, J., Hope, L., Johnstone, R., Mery, P., Serban, A., Gabriner, R. S. (2007). *Basic skills as a foundation for student success in California community colleges.* Sacramento, CA: The Research and Planning Group for California Community Colleges, Center for Student Success. Retrieved from http://www.cccbsi.org/Websites/basicskills/Images/Lit_Review_Student_Success. pdf

Bottge, B. A., & Cho, S.-J. (2013). Effects of enhanced anchored instruction on skills aligned to Common Core math standards. *Learning Disabilities: A Multidisciplinary Journal, 19*(2), 73–83. Retrieved from http://ldaamerica.org/learning-disabilities-a-multidisciplinary-journal/

Bottge, B. A., Ma, X., Gassaway, L., Toland, M., Butler, M., Cho, S. J. (2014). Effects of blended instructional models on math performance. Exceptional Children, 80, 423–437. doi:10.1177/0014402914527240

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. *Qualitative Research in Psychology, 3*(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Brenner, M. E., Mayer, R. E., Moseley, B., Brar, T., Duran, R., Reed, B. S., & Webb, D. (1997). Learning by understanding: The role of multiple representations in learning algebra. *American Educational Research Journal*, 34, 663-689. https://doi.org/10.1177/0091552111416227

Bringas, H. A. (2014). *Localization -contextualization*-slide share. Retrieved July 30, 2014, from www.slideshare.net/lenferndz/localization-contextualization

Center for Occupational Research and Development (2012). What is contextualize teaching? <u>http://www.cord.org/contextual-learning-definition/</u>

Damerow, P. Ed. (1986). *Mathematics for all. Problems of cultural selectivity and unequal distribution of mathematical education and future perspectives on mathematics teaching for the majority.* Paris: Unesco Press.

https://eric.ed.gov/?id=ED279519

Donnelly, R., & Fitzmaurice, M. (2005). *Designing Modules for Learning*. In G. O'Neill, S. Moore & B. McMullin(eds.)Emerging issues in the practice of University Learning and Teaching, Dublin, All Ireland Society for Higher Education (AISHE). https://arrow.tudublin.ie/ltcbk/4/

Enemali, I. A. & Adah, O. C. (2015b). Quality assurance in educational administration in the teaching of farm mathematics for national integration in Nigeria. *Journal of Education and Practice*, 6(23) 52-56. https://eric.ed.gov/?id=EJ1079020

93

Enemali, I. A. & Adah, O. C. (2015a). Empowering individuals and communities through agricultural education: The role of mathematics education. *Journal of Vocational and Technical Educators*, 4 (4) 46-50.

https://www.iiste.org/Journals/index.php/JNSR/article/viewFile/26516/27190

Felder, R. M., & Spurlin, J. (2005). Applications, Reliability and Validity of the Index of Learning Styles. International Journal of Engineering Edition, 21(1), 103-112. Retrieved from https://wss.apan.org/jko/mls/Learning%20Content/ILS_Validation (IJEE).pdf

- Flores, M. M. (2010). Using the concrete-representational-abstract sequence to teach subtraction with regrouping to students at risk for failure. Remedial and Special Education, 31(3), 195-207. doi: 10.1177/0741932508327467
- Forest, E. (201). The ADDIE Model: Instructional Design. Educational Technology: http://educationaltechnology.net/the-addie-model-instructional-design/
- Gillespie, M. (n.d.). EFF research principle: A contextualized approach to curriculum and instruction. Knoxville, TN: Equipped for the Future. Retrieved from http://www.edpubs.gov/document/ED001934W.pdf

Gutierrez, Rochelle. (2002). Enabling the practice of mathematics teachers in context: Toward a new equity research agenda. *Mathematical Thinking and Learning*, 4, 145-187. doi: 10.1207/S15327833MTL04023_4.

Hall., W. (n.d). Best practices for developing content modules and module pages.

Office of Distance Education.

https://www.wcupa.edu/distanceed/documents/BestPracticesContentModules.pdf

Heid, M. (1997). The technological revolution and the reform of school mathematics. *American Journal of Education*, *106*(1), 5-61.
 http://www.jstor.org/stable/1085673

Hudson, C. C. & Whisler, V. R. (2007). Contextual teaching and learning for practitioners. *Systemics, Cyberntics and Informatics, 6*(4), p. 54-55. Adult and Career Education, Valdosta State University Valdosta, GA 31602, USA. ISSN: 1690–4524. www.iiisci.org/journal/cv\$/sci/pdfs/e668ps.pdf

Jordan, L., Miller, M., & Mercer, C. D. (1998). The effects of concrete to semi-concrete to abstract instruction in the acquisition and retention of fraction concepts and skills. *Learning Disabilities: A Multidisciplinary Journal, 9*, 115–122. https://eric.ed.gov/?id=EJ594987

Krause, S. J., Waters, C., & Stuart, W. J. (2016). Effect of contextualization of content and concepts on students' course relevance and value in introductory materials classes. American Society for Engineering Education. https://asu.pure.elsevier.com/en/publications/effect-of-contextualization-of-

content-and-concepts-on-students-c

Lewis, L. N. (1984). *Applied mathematics in agricultural research*. http://calag.ucanr.edu/archive/?type=pdf&article=ca.v038n03p2

Mazzeo, C., Rab, S. Y., & Alssid, J. L. (2003). Building bridges to college and careers: Contextualized basic skills programs at community colleges. Brooklyn, NY: Workforce Strategy Center. http://go.collegeforamerica.org/l/37322/2016-01-20/3rt1rl/37322/149233/BUILDING_BRIDGES_TO_COLLEGE_AND_CAREERS_CO NTEXTUALIZED_BASIC_SKILLS_PROGRAMS_AT_COM.pdf

Nardo, M., & Hufana, E. (2014). Development and evaluation of modules in technical writing. *American Journal of Educational Research*, *2*, 341-350. doi: 10.12691/education-2-6-2.

Nucum, K. N. (2018). TVL: 101 Your Essential Guide to the SHS TVL Track in the Philippines. https://blog.edukasyon.ph/senior-high/tvl-101-your-essential-guideto-the-shs-tvl-track-in-the-philippines/

 Nworah, F. C. (2015). *Mathematics application for agricultural development in Nigeria*.
 In Sadiku, J.S (ed.) Proceedings of September 2015 Annual National Conference of Mathematical Association of Nigeria (M.A.N.).72-77.
 https://www.iiste.org/Journals/index.php/JNSR/article/viewFile/26516/27190

Obiedo, R. V. & Jugar, R. R. (2017). Contextualized teaching on the problem solving performance of students. http://journal.umindanao.edu.ph/wpcontent/uploads/2018/01/UM20172110_Contextualized-teaching-on-the-problemsolving-.pdf

Parker, S., Traver, A., Cornick, J. (2017). Contextualizing developmental math content into introduction to sociology in community colleges. CUNY Queensborough Community College. DOI: 10.1177/0092055X17714853. https://journals.sagepub.com/doi/pdf/10.1177/0092055X17714853

Paris, D. (2011). *Culturally sustaining pedagogy: A needed change in stance, terminology, and practice*. Educational Researcher, 41(3), 93–97.

Perin, D. (2011). Facilitating student learning through contextualization. CCRC Working Paper No. 29. Community College Research Center, Teachers College Columbia University.

https://ccrc.tc.columbia.edu/media/k2/attachments/facilitating-learningcontextualization-working-paper.pdf

Puri, K., Cornick, J., & Guy, G. M. (2014). An analysis of the impact of course elimination via contextualization in developmental mathematics. MathAMATYC Educator, *5*(2), 4-10. https://files.eric.ed.gov/fulltext/EJ1106053.pdf

Rapley, T. (2007). The Sage qualitative research kit. Doing conversation, discourse and document analysis. Sage Publications Ltd.

https://doi.org/10.4135/9781849208901

Reyes, J. D., Insorio, A. O., Ingreso, M. L., Hilario, F. F., & Gutierrez, C. R. (2019).
 Conception and Application of Contextualization in Mathematics Education. International Journal of Educational Studies in Mathematics, 2019, 6(1), 1-18.

97

Richey, R., & Klein, J. (2005). Developmental research methods: Creating knowledge from instructional design and development practice. *Journal of Computing in Higher Education, 16*, 23-38. doi: 10.1007/BF02961473.

Richey, R. C., Klein, J. D., & Nelson, W. A. (2004). Developmental research: Studies of instructional design and development. *In D. H. Jonassen (Ed.), Handbook of Research on Educational Communications and Technology*, 1099–1130.
Lawrence Erlbaum Associates Publishers. https://psycnet.apa.org/record/2004-00176-041

- Shinn, G. C., Briers, G. E., Christiansen, J. E., Harlin, J. F., Lawver, D. E., Linder, J. R., et al. (2003). *Improving student achievement in mathematics: An important role for secondary agricultural education in the 21st century.* (Unpublished manuscript). College Station, TX: Texas A&M University. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.5829&rep=rep1& type=pdf
- Simpson, M., & Nist, S. (2000). An update on strategic learning: It's more than textbook reading strategies. *Journal of Adolescent & Adult Literacy*, *43*(6), 528-541. http://www.jstor.org/stable/40016831

Stefanou, S., Willis, C., Segerson, K., Burt, O., & Norton, K. (n.d). *The role of mathematics in agricultural economic education and research.* https://ideas.repec.org/a/ags/nejare/28990.html

Spring (2010). Realia and contextualization.

http://gaining.educ.msu.edu/resources/node/422.

Stone, J. R., III, Alfeld, C., Pearson, D., Lewis, M. V., & Jensen, S. (2006). Building academic skills in context: Testing the value of enhanced math learning in CTE (Final study).St. Paul, MN: National Research Center for Career and Technical Education. from http://136.165.122.102/UserFiles/File/Math-in-CTE/MathLearningFinalStudy.pdf

Stripling, C. T. & Roberts, G. (2013). *Investigating the Effects of a Math-Enhanced Agricultural Teaching Methods Course*. Journal of Agricultural Education. Volume 54, Number 1, pp. 124 – 138. DOI: 10.5032/jae.2013.01124124.
http://www.jae-online.org/attachments/article/1725/54.1.11.Stripling.pdf

Tabach, M. & Friedlander, A. (2008). The role of context in learning beginning algebra. In C. E. Greenes, R. Rubenstein (Eds.), Algebra and algebraic thinking in school mathematics: Seventieth yearbook (pp. 223–232). Reston, VA: The National Council of Teachers of Mathematics, Inc.

Taylor, P. & Mulhall, A. (1997). Contextualising teaching and learning in rural primary schools: Using agricultural experience. Volume 1 - Education Research. Paper No. 20, 1997, 64 p. Serial No. 20. ISBN: 1 86192 045 8. Department for International Development.

https://ageconsearch.umn.edu/record/12884/files/er9720v1.pdf

Valenzuela, H. (2018). A multiple case study of college-contextualized mathematics curriculum. MathAMATYC Educator, 9(2), 49-55. Retrieved from http://www.amatyc.org/?page=MathAMATYCEducator

Wisely, W. C. (2009). *Effectiveness of contextual approaches to developmental math in California community colleges* (Unpublished doctoral dissertation). University of the Pacific, Stockton, CA.

Witzel, B., Mercer, C., & Miller, M. (2003). Teaching algebra to students with learning difficulties: An investigation of an explicit instruction model. *Learning Disabilities Research & Practice, 18*, 121 - 131. doi: 10.1111/1540-5826.00068.

Zanna, F. A. (2014). Mathematics for agricultural development: A key for peaceful coexistence. Mathematics Department, Federal College of Education, Potiskum, Yobe State, p. 4 – 6.

https://www.globalacademicgroup.com/journals/pristine/FALMATA%20ALHAJI.pdf