GRADUATE SCHOOL

Iloilo City

DEVELOPMENT OF A CURRICULUM ON RESEARCH WITH INNOVATION FOR POTENTIALLY GIFTED ELEMENTARY LEARNERS:

A DELPHI STUDY

A Dissertation Presented to
the Faculty of the Graduate School
College of Education
West Visayas State University
La Paz, Iloilo City

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in Education

(Curriculum Development)

by

Micron Rey B. Fuego

WEST VISAYAS STATE UNIVERSITY COLLEGE OF EDUCATION GRADUATE SCHOOL

INADUATES

Iloilo City

APPROVAL SHEET

A Dissertation for the Degree

Doctor of Philosophy in Education

(Curriculum Development)

by

Micron Rey B. Fuego

Approved by the Research Committee:	
ROBERTO G. SAGGE JR., PhD, Chairperson	
DAISY A. ROSANO, PhD, Member	
SHERBETH H. CONSEBIT, PhD, Member	
PURITA P. BILBAO, EdD, Member, Outside Expert	
MYRA ANGELIE D. OLIVEROS, PhD, Adviser	
	LOREY F. TANALEON, PhD, FHEA

April 2024

Dean

GRADUATE SCHOOL

Iloilo City

April 2024

Fuego, Micron Rey B. *Development of Curriculum on Research with Innovation for Potentially Gifted Elementary Learners: A Delphi Study.* Unpublished Dissertation, Doctor of Philosophy in Education major in Curriculum Development, West Visayas State University, Iloilo City, April 2024.

Abstract

Filipino gifted learners require tailored learning experiences to develop essential research and innovation skills for future success in industrial revolutions. This study was conducted to determine topics and competencies to develop a curriculum guide for Research with Innovation for potentially gifted elementary learners based on the inputs of experts. Through the paradigm of pragmatism, the study employed a three-round Delphi technique. Gifted professionals, potentially gifted learners, parents of potentially gifted learners, curriculum experts, curriculum implementers, and content experts composed the Delphi expert panel. There were 17, 13, and 9 of them who informed the three rounds respectively. Data were gathered through open-ended questionnaires and Likert-scales and were analyzed using median, percentage, interguartile range, and reflexive thematic analysis. Findings revealed agreement and consensus at 94.23% of topics and competencies on the second round and 88.89% on the final round leading to three thematic clusters: Inspiring Curiosity and Creativity, Engaging in Scientific Inquiry and Design Thinking, and Thinking Towards the Future. Also, Agreement and consensus

GRADUATE SCHOOL

Iloilo City

on curriculum framework elements were 100% in first the second round and 97.43% on

the third round. These were used to design and develop Research with Innovation

curriculum for potentially gifted elementary learners. Accompanying this is a novel

learner-centered innovation learning experience model has five phases namely, State

the need, Talk about it, Act on it, Reflect on it, and Share it (STARS), proposed for

teachers and learners. The evaluation of the five curriculum experts, curriculum

implementers, and content experts, shows that they strongly agreed on the curriculum's

balance, alignment, articulation, sequence, integration, and agreed on its continuity. The

use and implementation of this curriculum is desired to nurture talent in research and

innovation among potentially gifted elementary learners.

Keywords: research, innovation, potentially gifted, curriculum, Delphi

vii

GRADUATE SCHOOL

Iloilo City

TABLE OF CONTENTS

	Page
Title Page	i
Approval Sheet	ii
Acknowledgment	iii
Abstract	vi
List of Tables	xi
List of Figures	xiv
List of Appendices	xvi
Chapter	
1 INTRODUCTION TO THE STUDY	1
Background and Conceptual Framework of the Study	2
Epistemological and Theoretical Perspective	6
Statement of the Problem	11
Assumptions of the Study	11
Definition of Terms	13
Significance of the Study	16
Delimitation of the Study	19
2 REVIEW OF RELATED LITERATURE	20

GRADUATE SCHOOL

	Gifted Education in the Philippines	21
	Giftedness: Diverse Conceptions and the Filipino Perspectives	27
	Developing the Research Skills of Gifted Learners	41
	Teaching Innovation in STEAM Classes Through Design Thinking	58
	Using Delphi Process in Curriculum Development	70
	Shaping Research and Innovation Competencies in the Philippines	
	and ASEAN Region	75
	Developing and Designing a Curriculum	90
	Gifted Education Paradigms and Curriculum Models	97
	Summary	110
3	RESEARCH DESIGN AND METHODOLOGY	114
	Research Design	114
	Methods	117
	Participants	117
	Data Collection Procedure and Instruments	125
	Development of the First Round Questionnaire	125
	Conduct of the First Round Qualitative Survey	127
	Development of the Second Round Questionnaire	129
	Administration and Analysis of the Second Round Survey	132
	Development of the Third Round Questionnaire	136

GRADUATE SCHOOL

	Administration and Analysis of the Round 3 Survey	136
	Development and Evaluation of the Curriculum	137
	Output Evaluation Instrument	143
	Instrument Validators	148
	Data Analysis Procedure	149
	Qualitative Data Analysis	149
	Quantitative Data Analysis	155
	Methodological Rigor	156
	Ethical Considerations	163
4	RESULTS AND DISCUSSIONS	166
	Results of Three-Round Delphi Technique on Research	
	with Innovation Topics and Competencies	167
	Results of Three-Round Delphi Technique on Research	
	with Innovation Curriculum Framework Elements	245
	Research with Innovation Curriculum Guide	320
	Validation and Evaluation of the Curriculum Guide	350
5	SUMMARY, CONCLUSIONS, IMPLICATIONS, AND RECOMMENDATIONS	366
	Summary of Findings	367
	Conclusions	370

GRADUATE SCHOOL

	Implications	372
	Recommendations	380
	Reflexivity, Positionality, and Lessons Learned	383
Referenc	ces	396
Appendio	ces	358

GRADUATE SCHOOL

Iloilo City

LIST OF TABLES

Table		Page
1	Characteristics of Students who are Gifted in Science and Technology	40
2	Research Process in a Research Project Guide A Handbook for	
	Teachers and Students	47
3	Profile Potentially Gifted Students	120
4	The Profile Parents of the Potentially Gifted Students	121
5	The Profile Gifted Professionals	122
6	The Profile Curriculum Implementers	122
7	The Profile Curriculum Experts	123
8	The Profile Content Experts	124
9	The Participants and their Role	124
10	Decision Matrix	135
11	Scale for Interpreting the Questionnaire	146
12	Bootstrap Results for Acceptability of Research with Innovation	
	Topics and Competencies	159
13	Bootstrap Results for Significance of Research with Innovation	
	Topics and Competencies	160
14	Bootstrap Results for the Acceptability of Curriculum Framework	

GRADUATE SCHOOL

	Elements/Constructs	161
15	Bootstrap Results for the Significance of Curriculum Framework	
	Elements/Constructs	162
16	Topics and Competencies Themes and Subthemes	170
17	Topics and Competencies with Complete Agreement	216
18	Topics and Competencies with High Agreement	217
19	Topics and Competencies with Challenges	219
20	Round 2 Comments and Feedback from the Expert Panel on	
	Topics and Competencies	221
21	Inspiring Curiosity and Creativity: Getting Started with	
	Research and Innovation	224
22	Engaging in Scientific Inquiry and Design Thinking: Doing Research	
	and Innovation-Research Topics and Competencies	226
23	Engaging in Scientific Inquiry and Design Thinking: Doing Research	
	and Innovation-Design Topics and Competencies	230
24	Thinking Towards the Future: Introduction to Robotics and Other	
	Emerging Technologies	231
25	Round Three Comments and Feedback	232
26	Topics and Competencies for Research with Innovation	
	Curriculum Continuum 1	236

GRADUATE SCHOOL

27	Topics and Competencies for Research with Innovation	
	Curriculum Continuum 2	237
28	Topics and Competencies for Research with Innovation	
	Curriculum Continuum 3	239
29	Research with Innovation Curriculum Framework Elements/	
	Constructs Round 2	306
30	Comments/Suggestions of Panel on Curriculum Elements/	
	Framework Round-Two Items	309
31	Curriculum Framework Elements/Constructs with	
	Compete Agreement and Consensus	311
32	Curriculum Framework Elements/Constructs with Response Variability	
	Comments and Suggestions	312
33	Curriculum Framework Elements/Constructs	315
34	Ratings of Validators and Evaluators in terms of Balance	351
35	Ratings of Validators and Evaluators in terms of Alignment	353
36	Ratings of Validators and Evaluators in terms of Articulation	355
37	Ratings of Validators and Evaluators in terms of Sequence	356
38	Ratings of Validators and Evaluators in terms of Integration	358
39	Ratings of Validators and Evaluators in terms of Continuity	360
40	Summary of Area Means	362

GRADUATE SCHOOL

Iloilo City

LIST OF FIGURES

Figure		Page
1	Schematic Diagram of the Study	10
2	The Sub-skills and Objectives of the Research Skills Teaching Program	45
3	FINDS Research Model	46
4	Investigation Web Krajcik and Czemiak (2018)	48
5	Sample Page of the First-Round Instrument Page	
	with Comments/Feedback	126
6	A Screenshot of the Email Sent to One of the Participants	127
7	A Screenshot of the Response of a Participant Sent Through Mail	128
8	A screenshot of the Response of a Participant in Google Form	129
9	A Screenshot of the Formulation of Topics and Competency	
	Statements	130
10	A Screenshot of One of the Responses in the Second Round	133
11	Curriculum Development Process	138
12	Ideating on the Initial Curriculum Framework	140
13	Identifying the Level of Competencies According to	
	Revised Blooms Taxonomy	141
14	The Process of Iterating on Sequence and Placement of	

GRADUATE SCHOOL

	Competencies	141
15	Screenshot of the Version 10 of the Output for Validation and	
	Evaluation	142
16	Integrated Delphi and Curriculum Development Procedure	147
17	Reflexive Thematic Analysis Procedure	149
18	Photo of Printed and Encoded Data with Marks for Coding	150
19	Initial Codes Generated	151
20	Generating Initial Themes	152
21	Screenshot of the Process of Analyzing and Discussing Themes	153
22	The Final Set of Themes	154
23	Screenshot of Processing Data Through SPSS	158
24	Thematic Map of Research with Innovation Topics and Competencies	169
25	Thematic Map of Curriculum Elements/Constructs	245

GRADUATE SCHOOL

Iloilo City

LIST OF APPENDICES

Appe	endix	Page
Α	Ethics Review Approval	459
В	Screenshot of Invitation to Participate	461
С	Letter for Instrument Validation	463
D	Round 1 Qualitative Survey Instrument	465
Е	Round 2 Quantitative Survey Instrument	469
F	Round 3 Quantitative Instrument	472
G	Informed Consent	475
Н	Evaluation Instrument for Curriculum Guide	477
ī	The Curriculum Validators and Evaluators	479

GRADUATE SCHOOL

Iloilo City

- Abdurrahman, A., Nurulsari, N., Maulina, H., & Ariyani, F. (2019). Design and validation of inquiry-based stem learning strategy as a powerful alternative solution to facilitate gift students facing 21st century challenging. Journal for the Education of Gifted Young Scientists. https://doi.org/10.17478/JEGYS.513308.
- Adler, M. & Ziglio. E. (1996). Gazing into the oracle: The Delphi method and its application to social policy and public health. London: Jessica Kingsley Publishers.
- Aichouni, M., Touahmia, M., Al-Ghamdi, A., Ait-Messaoudene, N., Al-Hamali, R. M., Al-Ghamdi, A., & Al-Badawi, E. (2015). Creativity and innovation among gifted Saudi students-An empirical study. Procedia Social and Behavioral Sciences, 195, 1371–1379. https://doi.org/10.1016/j.sbspro.2015.06.403
- Akgün, A., Tokur, F., & Duruk, Ü. (2016). Associating conceptions in science teaching with daily life: Water chemistry and water treatment *. Adıyaman University Journal of Educational Sciences, 6(1), 161–178.

 https://doi.org/10.17984/adyuebd.87973
- Akins, R.B., Tolson, H. & Cole, B.R. Stability of response characteristics of a Delphi panel: application of bootstrap data expansion. *BMC Med Res Methodol* **5**, 37 (2005). https://doi.org/10.1186/1471-2288-5-37
- Alahlafi, A., & Burge, S. (2005). What should undergraduate medical students know about psoriasis? Involving patients in curriculum development: Modified Delphi technique. BMJ (Clinical research ed.), 330(7492), 633–636. https://doi.org/10.1136/bmj.330.7492.633

GRADUATE SCHOOL

Iloilo City

- Alashwal, M. (2020). Design thinking in STEM Education: A Review. , 5, 18. https://doi.org/10.5430/irhe.v5n1p18.
- Allina, B. (2018). The development of STEAM educational policy to promote student creativity and social empowerment. Arts Education Policy Review, 119, 77 87. https://doi.org/10.1080/10632913.2017.1296392
- Alsubaie, A. (2020). The effectiveness of multiple intelligence based differentiated instruction on metacognitive reading comprehension in Arabic language among middle school students in Saudi Arabia. Artificial Intelligence, 9, 158-166. https://doi.org/10.34069/ai/2020.26.02.17
- American Psychological Association, Center for Psychology in Schools and Education.

 (2017). Top 20 principles from psychology for preK–12 creative, talented, and gifted students' teaching and learning. Retrieved from http://

 www.apa.org/ed/schools/teaching-learning/top-twenty-principles.aspx
- Anani, G. E., Lamptey, H. K., & Frempong, C. O. (2021). Redefining Literacy in a Digital Age: The role of instructors in promoting digital literacy. Journal of English Language Teaching and Applied Linguistics, 3(8), 20–25. https://doi.org/10.32996/jeltal.2021.3.8.3
- Anwari, I. & Kumano, Y (2014). Analysis of attitude in science learning and design skills through implementation STEM education, 29 (9), pp 7-10. JSSE Research Report. https://doi.org/10.14935/jsser.29.97

GRADUATE SCHOOL

Iloilo City

- Aprilia, S. (2016). Penerapan pembelajaran experiential learning untuk meningkatkan kualitas pembelajaran ipa kelas v sekolah dasar. Performance Evaluation, 5. https://doi.org/10.25273/PE.V5I01.322.
- Arnold, J., Boone, W. J., Kremer, K., & Mayer, J. (2018). Assessment of competencies in scientific inquiry through the application of RASCH measurement techniques.

 Education Sciences, 8(4), 184. https://doi.org/10.3390/educsci8040184
- Arvin, L. (2024, February 4). What is Design Theory, and How is It Used in The Real World? Kreafolk. https://kreafolk.com/blogs/articles/design-theory
- Aslan, S., & Kılıç, H. E. (2022). Explicit teaching of science process skills: Learning outcomes and assessments of pre-service science teachers. Mimbar Sekolah Dasar, 9(3), 446–465. https://doi.org/10.53400/mimbar-sd.v9i3.45795
- Association of Southeast Asian Nations (ASEAN) (2017). ASEAN Plan of Action on Science, Technology and Innovation (APASTI) 2016-2025.

 https://asean.org/book/asean-plan-of-action-on-science-technology-and-innovation-apasti-2016-2025/
- Ata-Aktürk, A., & Demircan, H.Ö. (2021). Supporting preschool children's STEM learning with parent-involved early engineering education. Early Childhood Educ J 49, 607–621. https://doi.org/10.1007/s10643-020-01100-1
- Atalay, Ö., & Kahveci, N. (2015). An experimental study on effectiveness of integrated curriculum model (icm) in social studies education for gifted and talented

GRADUATE SCHOOL

Iloilo City

- learners.. Educational Research Review, 10, 1049-1062. https://doi.org/10.5897/ERR2015.2151.
- Avcu, Y. E., & Er, K. O. (2020). Design thinking applications in teaching programming to gifted students. Journal of Educational Technology and Online Learning, 3(1), 1–30. https://doi.org/10.31681/jetol.671621
- Avsec, S. (2021). Design thinking to enhance transformative learning. Global Journal of Engineering Education, 23(3), 169–175.
- Aydoğdu, B. (2015). The investigation of science process skills of science teachers in terms of some variables. Educational Research and Reviews, 10(5), 582–594. https://doi.org/10.5897/err2015.2097
- Azis, R. (2016). Kerangka dasar dalam pengembangan kurikulum 2013. , 5, 286-292. https://doi.org/10.24252/IP.V5I2.3483.
- Azizah, F., Anggoro, S., & Hayati, A. (2021). Developing and validating of differentiated instruction based multiple intelligence. Proceedings of the 1st International Conference on Social Sciences, ICONESS 2021, 19 July 2021, Purwokerto, Central Java, Indonesia. https://doi.org/10.4108/eai.19-7-2021.2312782.
- Bada, A., & Jita, L. (2022). Integrating brain-based learning in the science classroom: A systematic review. International Journal of Pedagogy and Teacher Education. https://doi.org/10.20961/ijpte.v6i1.57377

GRADUATE SCHOOL

Iloilo City

- Bacon, J. and Fitzgerald, B. (2001) A systemic framework for the field of information systems. Data Base, Vol. 32, No. 2, pp. 46-65. Retrieved from https://www.brjan-fitzgerald.com/wp-content/uploads/2013/10/bacon-fitz-01-database-final.pdf
- Bagiati, A., & Evangelou, D. (2015). Engineering curriculum in the preschool classroom: the teacher's experience. European Early Childhood Education Research Journal, 23, 112 128. https://doi.org/10.1080/1350293X.2014.991099.
- Baiden, D. (2021). Meeting the unique needs of gifted students through an arts-integrated, project-based learning opportunity: The encyclopedia project. Gifted Child Today, 44, 151 170. https://doi.org/10.1177/10762175211008516.
- Bakar, A. (2016) "Digital Classroom": An innovative teaching and learning technique for gifted learners using ICT. Creative Education, 7, 55-61. doi: 10.4236/ce.2016.71006.
- Baker, B. (2015). From "somatic scandals" to "a constant potential for violence"? The culture of dissection, brain-based learning, and the rewriting/rewiring of "the child". Journal of Curriculum and Pedagogy, 12, 168 197.

 https://doi.org/10.1080/15505170.2015.1055394.
- Bapanova, G. K., Orekhova, N. V., Kadirsizova, S. B., Kasbayeva, G. S., & Sholpankulova, G. K. (2023). Research skills as the student learning achievement. International Journal of Educational Reform, 0(0). https://doi.org/10.1177/10567879231155874

GRADUATE SCHOOL

Iloilo City

- Barcelona, K. E. P., Daling, B. A. J., Doria, P., Balangiao, S. J., Mailes, M. J., Chiang, P., & Ubatay, D. (2023). Challenges and opportunities of TLE teachers in Philippine public schools: An inquiry. British Journal of Multidisciplinary and Advanced Studies, 4(4), 44–60. https://doi.org/10.37745/bjmas.2022.0247
- Barnard-Brak, L., Johnsen, S. K., Pond Hannig, A., & Wei, T. (2015). The incidence of potentially gifted students within a special education population. Roeper Review, 37(2), 74–83. https://doi.org/10.1080/02783193.2015.1008661
- Barone, D., & Barone, R. (2019). Valuing the process and product of inquiry-based instruction and learning*. Journal for the Education of the Gifted, 42, 35 63. https://doi.org/10.1177/0162353218816385.
- Barrett-Zahn, E. (2022). Design thinking. Editor's Note. Science and Children. [ISSN 0036-8148 (print) 1943-4812 (online). National Science Teaching Association.

 Retrieved from https://www.nsta.org/science-and-children/science-and-children-januaryfebruary-2022/design-thinking
- Baş, G. (2016). The effect of multiple intelligences theory-based education on academic achievement: A meta-analytic review. Kuram Ve Uygulamada Egitim Bilimleri, 16, 1833-1864. https://doi.org/10.12738/ESTP.2016.6.0015.
- Baterna, H. B., Mina, T. D. G., & Rogayan, D. V. (2020). Digital Literacy of STEM Senior High School Students: Basis for Enhancement Program. International Journal of Technology in Education, 3(2), 105. https://doi.org/10.46328/ijte.v3i2.28

GRADUATE SCHOOL

Iloilo City

- Beaumont, C. & Martin, K. (2019). The effect of thinking routines on 4th and 5th-grade students' sense of agency. https://sophia.stkate.edu/maed/319
- Belland, B. R. (2017). Instructional scaffolding in STEM education. In Springer eBooks. https://doi.org/10.1007/978-3-319-02565-0\ Bentley, M., Kerr, R. &Powell, S. (2016). The use of a modified Delphi technique to inform the development of best practice in interprofessional training for collaborative Primary Healthcare. Journal of Research in Interprofessional Practice and Education. 6 (1), 1-39. https://doi.org/10.22230/jripe.2016v6n1a232
- Bence-Fekete, A. (2017). Research? learning? exploring? individual knowledge acquisition. *Practice and Theory in Systems of Education*, *12*(3), 109–118. https://doi.org/10.1515/ptse-2017-0011
- Besar, P. (2018). Situated learning theory: The key to effective classroom teaching?. , 1. https://doi.org/10.2121/.V1I1.1022.G918.
- Bialik, M., Fadel, C., Trilling, B., Nilsson, P., & Groff, J. (2015). Skills for the 21st century: What should students learn. Boston: Centre for Curriculum Redesign
- Biesta, G. & Burbules, N.C. (2003). Pragmatism and educational research. Westport, CT: ABLEX Publishing Company.
- Bilbao, P., Dayagbil, F., & Corpuz, B. (2015). Curriculum development for teachers.

 Lorimar Publishing Incorporated. Metro Manila

GRADUATE SCHOOL

Iloilo City

- Birko, S., Dove, E. S., & Özdemir, V. (2015). A Delphi technology foresight study:

 Mapping social construction of scientific evidence on metagenomics tests for water safety. PLoS ONE, 10(6), 1–19. https://doi.org/10.1371/journal.pone.0129706
- Blessinger, P., & Carfora, J. (2015). Innovative approaches in teaching and learning: An introduction to inquiry-based learning for stem programs.

 https://doi.org/10.1108/S2055-364120150000004001.
- Blessinger, P., Sengupta, E., & Yamin, T. S. (Eds.). (2020). Integrating sustainable development into the curriculum (1st ed.). Emerald Publishing Limited. https://books.emeraldinsight.com/resources/pdfs/chapters/9781787699427-TYPE23-NR2.pdf
- Boice, K., Jackson, J., Alemdar, M., Rao, A., Grossman, S., & Usselman, M. (2021).
 Supporting teachers on their STEAM journey: A collaborative STEAM teacher training program. Education Sciences, 11, 105.
 https://doi.org/10.3390/EDUCSCI11030105.
- Boix Mansilla, V., & Jackson, A. (2011). Educating for global competence: Preparing our youth to engage the world. Retrieved from https://asiasociety.org/files/book-globalcompetence. pdf.
- Brady, S. R. (2015). Utilizing and adapting the Delphi method for use in qualitative research. International Journal of Qualitative Methods, 14(5), 160940691562138. https://doi.org/10.1177/1609406915621381

GRADUATE SCHOOL

Iloilo City

- Bragas, B. N. M. & Camitan IV, D. (2020). Caught between two worlds: Conception of giftedness in the Dumagat-Remontados culture of Paglitao. Retrieved from https://www.researchgate.net/publication/340858933 Caught Between Two Worlds Conception of Giftedness in the Dumagat-Remontados Culture of Paglitao
- Braun, V., & Clarke, V. (2022). Thematic analysis: A practical guide. Sage.
- Braza, M. T. & Supapo, S. S. (2014). Effective solutions in the implementation of the K to 12 mathematics curriculum. SAINSAB 17, 12–23.
- Bruce-Davis, M., Gilson, C., & Matthews, M. (2017). Fostering authentic problem seeking: A step toward social justice engagement. Roeper Review, 39, 250 261. https://doi.org/10.1080/02783193.2017.1363099
- Bruschi, G., & Dutra, P. (2020). A complementary stem teaching resource: Applicability of analytical-numeric methods and programming language for the analysis of isostatic structures. 39, 357-368. https://doi.org/10.37702/REE2236-0158.V39P357-368.2020.
- Byrne, D. (2022). A worked example of Braun and Clarke's approach to reflexive thematic analysis. Quality and Quantity, 56(3), 1391–1412. https://doi.org/10.1007/s11135-021-01182-y
- Cabello, V. & Lohrmann, M. (2017). Fading scaffolds in STEM: Supporting students' learning on explanations of natural phenomena., 350-360.

 https://doi.org/10.1007/978-3-319-60018-5-34.

GRADUATE SCHOOL

Iloilo City

- Caiman, C. & Lundegård, I. (2017). Young children's imagination in science education and education for sustainability. Cultural Studies of Science Education. doi:10.1007/s11422-017-9811-7
- Calabrese, J. & Capraro, R. (2021). The autonomy of informal STEM and benefits of andragogy with gifted children. Journal of Research in Innovative Teaching & Learning. https://doi.org/10.1108/jrit-08-2021-0060.
- Campbell, A., Craig, T. S., & Collier-Reed, B. I. (2019). A framework for using learning theories to inform 'growth mindset' activities. International Journal of Mathematical Education in Science and Technology, 51(1), 26–43. https://doi.org/10.1080/0020739x.2018.1562118
- Cao, T. H., Jung, J. Y., & Lee, J. (2017). Assessment in gifted education: A review of the literature from 2005 to 2016. Journal of Advanced Academics, 28(3), 163-203. https://doi.org/10.1177/1932202X17714572
- Carroll, M. (2015). Stretch, dream, and do-a 21st century design thinking & STEM journey. In Journal of Research in STEM Education (Vol. 1, Issue 1).
- Celik, S. (2016). Differentiating instructions by using multiple teaching ways in reading classes. Journal of Humanity Sciences, 20, 263-268.
- Chamayleh, I. (2016). "Reflective thinking and its relationship with learning styles among gifted students in Jordan," Al Jinan الجنان: Vol. 8, Article 6. Available at: https://digitalcommons.aaru.edu.jo/aljinan/vol8/iss1/6

GRADUATE SCHOOL

Iloilo City

- Chamdani, M., Ali Yusuf, F., Salimi, M., & Fajari, L. E. W. (2022). Meta-analysis study:

 The relationship between reflective thinking and learning achievement. Journal on

 Efficiency and Responsibility in Education and Science, 15(3), 181–188.

 https://doi.org/10.7160/eriesj.2022.150305
- Chan, D. (2015). Education for the gifted and talented. 158-164. https://doi.org/10.1016/B978-0-08-097086-8.92137-8.
- Chan, D. W. (2018). Gifted education in Asia. In S. I. Pfeiffer, E. Shaunessy-Dedrick, & M. Foley-Nicpon (Eds.), APA handbook of giftedness and talent (pp. 71–84).

 American Psychological Association. https://doi.org/10.1037/0000038-005
- Chapman, A. & Feldman, A. (2017). Cultivation of science identity through authentic science in an urban high school classroom. Cultural Studies of Science Education, 12(2), 469–491. https://doi.org/10.1007/s11422-015-9723-3
- Chen, L. A. (2006). Theory and practice of creative thinking teaching. Taipei: Psychology.
- Chekriy, I. (2020). Peculiarities of the curriculum implementation (based on the UNESCO materials). 2020, 67-72. https://doi.org/10.24195/2617-6688-2020-2-9.
- Choi, J., An, S., & Lee, Y. (2015). A Case Study of distance education for informatics gifted students. , 358-380. https://doi.org/10.4018/978-1-4666-6489-0.CH017.
- Choi, J. (2019). How creative mindset is involved in positive emotions and attitude that affects creative design process., 3-12. https://doi.org/10.1007/978-3-030-20470-91.

GRADUATE SCHOOL

Iloilo City

- Chourasia, S., Tyagi, A., Pandey, S. M., Walia, R. S., & Murtaza, Q. (2022). Sustainability of industry 6.0 in global perspective: Benefits and challenges. MAPAN-Journal of Metrology Society of India, 37(2), 443–452. https://doi.org/10.1007/s12647-022-00541-w
- Chun, M., Kang, K., Kim, Y., & Kim, Y. (2015). Theme-based project learning: Design and application of convergent science experiments. Universal Journal of Educational Research, 3, 937-942. https://doi.org/10.13189/UJER.2015.031120.
- Čikoš, K. (2021). Učenje darovitih u izmenjenom društvenom kontekstu. Nauka, nastava, učenje u izmenjenom društvenom kontekstu.

 https://doi.org/10.46793/nnu21.615c.
- Cohen, L., Manion, L. and Morrison, K. (2011). Research methods in education. London: Routledge.
- Cole, R., Lantz, J., Ruder, S., Reynders, G., & Stanford, C. (2018). Board 25: Enhancing learning by assessing more than content knowledge. https://doi.org/10.18260/1-2-29991.
- Combs, L. B., Cennamo, K. S., & Newbill, P. L. (2009). Developing critical and creative thinkers: Toward a conceptual model of creative and critical thinking processes.
- Consebit, S. (2015). Conceptions of giftedness among Visayans: Basis for the development of an assessment tool. Unpublished Dissertation. West Visayas State University. Iloilo, Philippines.

GRADUATE SCHOOL

Iloilo City

- Coorey J., & Caldwell Rinnert G., (2019), Design thinking for preschoolers: encouraging empathy through play. Conference proceedings, International Association of Societies of Design Research Conference 2019 (IASDR): Design Revolutions, Manchester, UK. Retrieved from:
 - https://iasdr2019.org/uploads/files/Proceedings/le-f-1157-Coo-J.pdf
- Cornejo-Araya, C., & Kronborg, L. (2021). Inspirational teachers' model: A constructivist grounded theory study in gifted education. Journal for the Education of the Gifted, 44, 300 326. https://doi.org/10.1177/01623532211023595.
- Cotabish, A., Dailey, D. & Jackson, N. (2017). Aligning gifted programming and services with national and state standards in designing services and programs for highability learners. 2nd Ed. Eckert, R. & Robins, J. Eds. National Association for Gifted Children. Corwin. Sage
- Creswell, J.W. (2013) Research design: Qualitative, quantitative, and mixed methods approaches. 4th Edition, SAGE Publications, Inc., London.
- Cuartero-Enteria, O. (2016). Impact of doing Science Investigatory Project (SIP) on the interest and process skills of elementary students. International Journal of Multidisciplinary Academic Research, 4(5), 27-41
- Curto, B., Lucibello, S., & Trebbi, L. (2018). Innovation in design through materials: The project-based learning (PBL) method. 6674-6682. https://doi.org/10.21125/INTED.2018.1571.

GRADUATE SCHOOL

Iloilo City

410

- Dakhlallah, N. M., Aloshi, J., & Ahmad, S. (2022). Social and emotional characteristics of gifted children. In Journal of Positive School Psychology, 2022 (8). http://journalppw.com
- Dai, D.Y. & Chen, F. (2013). Three paradigms of gifted education. Gifted Child Quarterly, 57(3), 151–168. doi:10.1177/0016986213490020
- Davis, J. M. (Ed.). (2010). Young children and the environment: Early education for sustainability. Cam-bridge: Cambridge University Press.
- Davis, G., Rimm, S., & Sieggle, D. (2014) Education of the Gifted and Talented. Pearson
- De Vries, H. B. & Lubart, T. (2017). Scientific creativity: Divergent and convergent thinking and the impact of culture. The Journal of Creative Behavior, 53(2), 145–155. https://doi.org/10.1002/jocb.184
- Delen, I. & Sedat, S. (2023). Effect of design-based learning on achievement in K-12 education: A meta-analysis.

 https://eric.ed.gov/?q=source%3A%22Journal+of+Research+in+Science+Teachin
- Delbecq, A. L., Van de Ven, A. H., & Gustafson, D. H. (1975). Group techniques for program planning. Glenview, IL: Scott, Foresman, and Co.

g%22&ff1=subTeaching+Methods&id=EJ1362864

Delphi Study – European Foresight Platform. (n.d.). European Foresight Platform Supporting Forward Looking Decision Making. http://foresightplatform.eu/community/forlearn/how-to-do-foresight/methods/classical-delphi/

GRADUATE SCHOOL

Iloilo City

- Department of Education (1999). DepEd Order 108, S. 1999: Strengthening of special education programs for the gifted in the public school system.
 - https://www.deped.gov.ph/wp-content/uploads/1999/10/DO s1999 108.pdf
- Department of Education. (2009) DepEd Order 99: Organization of headstart classes for the gifted and talented preschoolers
- Department of Education. (2011). DepEd Order 57. Policy guidelines on the implementation of Special Science Elementary school program.
- Department of Education, (2016). DepEd Order 39. Adoption of the basic education research agenda.
- Department of Education. (2019). Policy Guidelines on the K to 12 basic education program.
- Department of Education (2021). Deped Order No. 44. Policy guidelines on the provision of educational programs and services for learners with disabilities in the K to 12 basic education program
- Dewey, J. (1993). How we think; A restatement of the relation of reflective thinking to the educative process, New York, D. C. Heath and Company
- Diefenthaler, A., Moorhead, L., Speicher, S., Bear, C., & Cerminaro, D. (n.d.). Thinking & acting like a designer: How design thinking supports innovation in K-12 education.
- Dignath C., Veenman M. V. J. (2020). The role of direct strategy instruction and indirect activation of self-regulated learning: Evidence from classroom observation studies.

GRADUATE SCHOOL

Iloilo City

- Educational Psychology Review, 33(2), 489-533. https://doi.org/10.1007/s10648-020-09534-0
- Dirkx K. J. H., Camp G., Kester L., Kirschner P. A. (2019). Do secondary school students make use of effective study strategies when they study on their own? Applied Cognitive Psychology, 33(5), 952-957. https://doi.org/10.1002/acp.3584
- Duggal, A. S., Malik, P. K., Gehlot, A., Gehlot, A., Gaba, G. S., Masud, M., & Al-Amri, J. F. (2021). A sequential roadmap to industry 6.0: Exploring future manufacturing trends. Iet Communications, 16(5), 521–531. https://doi.org/10.1049/cmu2.12284
- Duit, R. (2016). The constructivist view in science education what it has to offer and what should not be expected from it. https://www.semanticscholar.org/paper/The-constructivist-view-in-science-education-%E2%80%93-what-Duit/30a3cb043f10ae9a5e34ff6b245a40f02865e728
- Dzanagova, I.T. (2022). Research work as a means of activation of schoolchildren's cognitive activity. CITISE, no. 1, pp.350-357. DOI: http://doi.org/10.15350/2409-7616.2022.1.30
- Education Management Information System Division, Department of Education.

 (unpublished). *Gifted Learners Tagged in Learner Information System* [Dataset].

 Requested through Electronic Freedom of Information Philippines on June 2023
- Engudar, N. A., Sarıoğlan, A. B., & Dolu, G. (2020). The effect of open inquiry learning on gifted students' conceptual understanding. New Trends and Issues Proceedings

GRADUATE SCHOOL

Iloilo City

- on Humanities and Social Sciences, 7(1), 75–83.
- https://doi.org/10.18844/prosoc.v7i1.4869
- Enteria, O. C. (2017). Impact of doing Science Investigatory Project (SIP) on the. 4(November 2016), 27–41.
- Erdoğan, N. (2016). Communities of practice in online learning environments: A sociocultural perspective of science education. International Journal of Education in Mathematics, Science and Technology, 4(3), 246.

 https://doi.org/10.18404/ijemst.20679
- Erdoğan, S.C. (2017). Science teaching attitudes and scientific attitudes of pre-service teachers of gifted students. Journal of Education and Practice, 8, 164-170. https://files.eric.ed.gov/fulltext/EJ1133039.pdf
- Eriksson, G. (2015). A comprehensive plan for authentic integration of technology in the gifted curriculum. , 273-306. https://doi.org/10.1007/978-94-6300-004-8 14.
- Ersoy, E., Aydin, H., Uysal, R. (2019). Journal of ethnographic & qualitative research, v14 n2 p95-111 Win 2019
- Eskicumali, A., Kara, N., Arslan, S., & Uzun, K. (2020). Investigation of communication skills of gifted students in terms of various variables. The Online Journal of Quality in Higher Education, 7(1), 43–48.
 - https://www.tojqih.net/journals/tojqih/articles/v07i01/v07i01-02.pdf
- Eysink, T. H., Gersen, L., & Gijlers, H. (2015). Inquiry learning for gifted children. High Ability Studies, 26(1), 63–74. https://doi.org/10.1080/13598139.2015.1038379

GRADUATE SCHOOL

Iloilo City

- Fajardo, B. (2019). Scientific attitudes and values as factor correlates of students performance in Science and Technology IO of Dr. Maria D. Pastrana National High School. https://ojs.aaresearchindex.com/index.php/AAJMRA/article/view/10788
- Faustino, J., & Hiwatig, A. D. F. (2012). Special Science Elementary School: Project and education in the Philippines prospects for gifted. Journal of Science Education in Japan, 36 (2), p 131-141. https://doi.org/10.14935/jssej.36.131
- Fayek, H. M., Cavedon, L., & Wu, H. R. (2020). Progressive learning: A deep learning framework for continual learning. Neural Networks, 128, 345–357. https://doi.org/10.1016/j.neunet.2020.05.011
- Florida Department of Education (2022). FINDS- Florida's Library Media Research Model.

 www.fldoe.org. https://www.fldoe.org/academics/standards/subject-areas/library-media-services-instructional-t/info-literacy-fls-library-media-curric.stml
- Franc, J. M., Hung, K. K. C., Pirisi, A., & Weinstein, E. S. (2023). Analysis of Delphi study
 7-point linear scale data by parametric methods: Use of the mean and standard
 deviation. *Methodological Innovations*, *16*(2), 226–233.
 https://doi.org/10.1177/20597991231179393
- Frantz, R. S., & McClarty, K. L. (2016). Gifted education's reflection of country-specific cultural, political, and economic features. Gifted and Talented International, 31(1), 46–58. https://doi.org/10.1080/15332276.2016.1220794

GRADUATE SCHOOL

Iloilo City

- French, H. (2005). A pilot study of the "Jacob's Ladder Reading Comprehension

 Program" with gifted and potentially gifted learners in grades 3, 4, and 5.

 Dissertations, Theses, and Masters Projects. William & Mary. Paper 1550154069.

 https://dx.doi.org/doi:10.25774/w4-p29d-t928
- Foy, A. (2018). Florida's library media research model and standards-based instruction.

 Retrieved from https://www.fldoe.org/core/fileparse.php/5660/urlt/FINDS-

 Webinar.pdf
- Gallagher, S. (2019). Epistemological differences between gifted and typically developing middle school students. Journal for the Education of the Gifted, 42, 164 184. https://doi.org/10.1177/0162353219836924.
- Gallagher, S. A. (2021). Adapting problem-based learning for gifted students. In Routledge eBooks (pp. 413–443). https://doi.org/10.4324/9781003236603-17
- Gandy, S., Bonnelle, V., Jacobs, E., & Luke, D.P. (2022). Psychedelics as potential catalysts of scientific creativity and insight. Drug Science, Policy and Law, 8.
- Garces-Bacsal, R. M. (2011). Socioaffective issues and concerns among gifted Filipino children. Roeper Review, 33(4), 239–251.
 - https://doi.org/10.1080/02783193.2011.603112
- García-Jiménez, E., Gallego-Noche, B., & Gómez-Ruiz, M. (2015). Feedback and self-regulated learning: How feedback can contribute to increase students' autonomy as learners. 113-130. https://doi.org/10.1007/978-3-319-10804-9 9

GRADUATE SCHOOL

Iloilo City

- Ghaderi, I., & Farrell, T. (2020). Toward effective feedback: From concept to practice. Surgery. https://doi.org/10.1016/j.surg.2019.06.014.
- Golubović-Ilić, I.B. (2023). STEM activities in working with children of early ages.

 Savremeno predškolsko vaspitanje i obrazovanje tendencije, izazovi i mogućnosti. DOI:10.46793/spvo23.191gi
- Gomez-Arizaga, M. P., Valdivia-Lefort, M., Castillo-Hermosilla, H., Hébert, T. P., & Conejeros-Solar, M. L. (2020). Tales from within: Gifted students' lived experiences with teaching practices in regular classrooms. Education Sciences 2020, Vol. 10, Page 137, 10(5), 137. https://doi.org/10.3390/EDUCSCI10050137
- Goodman, C. M. (1987). The Delphi technique: a critique. *Journal of Advanced Nursing*, 12(6), 729–734. https://doi.org/10.1111/j.1365-2648.1987.tb01376.x
- Gorghiu, G., & Santi, E. (2016). Applications of experiential learning in science education non-formal contexts. 320-326. https://doi.org/10.15405/EPSBS.2016.11.33.
- Gwangwava, N. (2021). Learning design thinking through a hands-on learning model.

 International Journal of Innovative Teaching and Learning in Higher Education,

 2(1), 1–19. https://doi.org/10.4018/ijitlhe.20210101.oa4
- Habibi, A., Sarafrazi, A., & Izadyar, S. (2014). Delphi technique theoretical framework in qualitative research. The International Journal Of Engineering And Science, 3 (4), pp 8-13. Retrieved from https://www.theijes.com/papers/v3-i4/Version-4/B03404008013.pdf

GRADUATE SCHOOL

Iloilo City

- Haim, K., & Aschauer, W. (2022). Fostering Scientific Creativity in the Classroom: The Concept of Flex-Based Learning. *Int*ernational Journal of Learning, Teacropleching and Educational Research. DOI:10.26803/ijlter.21.3.11
- Han, K. (2017). Why & how we apply PBL to science-gifted education? Creative Education, 08, 912-924. https://doi.org/10.4236/CE.2017.86066.
- Han, H. J., & Shim, K. C. (2019). Development of an engineering design process-based teaching and learning model for scientifically gifted students at the Science Education Institute for the Gifted in South Korea. Asia-Pacific Science Education, 5(1). https://doi.org/10.1186/s41029-019-0047-6
- Hardman, M., Drew C., & Egan, M.W. (2009). Human exceptionality. School, Community, and family (9th Ed.). Cengage Learning Asia Pte Ltd
- Harvard Graduate School of Education (2017) Learning loop. Exploring design thinking in the classroom. Retrieved from https://tll.gse.harvard.edu/files/learning-loop-7.pdf
- Hasson, F., Keeney, S., & McKenna, H. (2000). Research guidelines for the Delphi survey technique. Journal of Advanced Nursing, 32(4), 1008–1015. https://doi.org/10.1046/j.1365-2648.2000.t01-1-01567.x
- Hatzigianni, M., Stevenson, M., Bower, M., Falloon, G. & Forbes, A. (2020) Children's views on making and designing. European Early Childhood Education Research Journal, 28:2, 286-300, DOI: 10.1080/1350293X.2020.1735747

GRADUATE SCHOOL

Iloilo City

- He, P. (2021). STEM education and engineering education in 21st century. Reality and Perspectives. Social Science Research Network.

 https://doi.org/10.2139/SSRN.3763043.
- Hebda, M. (2023). Technology talent development: beyond an hour of code. Gifted Child Today, 46, 108 118. https://doi.org/10.1177/10762175221149256
- Hebebci, M.T., & Usta, E. (2022). The Effects of Integrated STEM Education Practices on Problem Solving Skills, Scientific Creativity, and Critical Thinking

 Dispositions. *Participatory Educational Research*.

 https://doi.org/10.17275/per.22.143.9.6
- Henderson, L., & Jarvis, J. (2016). The gifted dimension of the Australian professional standards for teachers: Implications for professional learning. Australian Journal of Teacher Education, 41, 60-83. https://doi.org/10.14221/AJTE.2016V41N8.4
- Hennessey, E., & Mueller, J. (2020). Teaching and learning design thinking (DT): How do educators see DT fitting into the classroom? Canadian Journal of Education, 43(2), 498–521.
- Hernández-Torrano, D., & Saranli, A. G. (2015). A cross-cultural perspective about the implementation and adaptation process of the schoolwide enrichment model: The importance of talent development in a global world. Gifted Education International, 31(3), 257–270. https://doi.org/10.1177/0261429414526335
- Heward, W. (2003). Exceptional children: An introduction to special education. Pearson Education. New Jersey.

GRADUATE SCHOOL

Iloilo City

- Hsu, C. & Sandford, B. (2007). The Delphi Technique: Making Sense of Consensus.

 *Practical Assessment Research & Evaluation, 12(10). Available online:

 http://pareonline.net/getvn.asp?v=12&n=10
- Huang, P.-S., Peng, S.-L., Chen, H.-C., Tseng, L.-C., & Hsu, L.-C. (2017). The relative influences of domain knowledge and domain-general divergent thinking on scientific creativity and mathematical creativity. Thinking Skills and Creativity, 25, 1–9. doi:10.1016/j.tsc.2017.06.001
- Hughes, G. (2019). Developing student research capability for a 'post-truth' world: Three challenges for integrating research across taught programmes. Teaching in Higher Education, 24(3), 394–411. https://doi.org/10.1080/13562517.2018.1541173
- Hwang, G., Li, K., & Lai, C. (2020). Trends and strategies for conducting effective STEM research and applications: a mobile and ubiquitous learning perspective. Int. J. Mob. Learn. Organisation, 14, 161-183.
 https://doi.org/10.1504/IJMLO.2020.10022182.
- Ibata-Arens, K. C. (2012). Race to the future: Innovations in gifted and enrichment education in Asia, and implications for the United States. Administrative Sciences, 2(1). https://doi.org/10.3390/admsci2010001
- Ilomäki, L., Paavola, S., Lakkala, M., & Kantosalo, A. (2016). Digital competence An emergent boundary concept for policy and educational research. Education and Information Technologies, 21, 655-679. https://doi.org/10.1007/s10639-014-9346-

GRADUATE SCHOOL

Iloilo City

- Inciong, T., Quijano,, Y., Capulong, Y., Gregorio, J., & Gines, A. (2007). Introduction to special education. Rex Bookstore Inc.
- Ion, G., Martí, A., & Morell, I. (2018). Giving or receiving feedback: Which is more beneficial to students' learning? Assessment & Evaluation in Higher Education, 44, 124 138. https://doi.org/10.1080/02602938.2018.1484881.
- Irwanto, I. (2022). The impact of research-oriented collaborative inquiry learning on pre-service teachers' scientific process skills and attitudes. Journal of Technology and Science Education, 12(2), 410-425. https://doi.org/10.3926/jotse.1583
- Jeong, S., Cheon, O., & Kang, S. (2015). A case study on the development and implementation of a elementary science differentiated instruction-learning program for the gifted underachievers. , 34, 394-405.

 https://doi.org/10.15267/KESES.2015.34.4.394.
- Joanna, K., Garner., Erica, Matheny., Alaina, Rutledge., Melissa, G., Kuhn. (2021).

 Invention Education as a Context for Children's Identity Exploration. 4(1):1-14.

 doi: 10.15695/JSTEM/V4I1.07
- Johnsen, S. (2021). Portfolio assessment of gifted students. Alternative Assessments. https://doi.org/10.4324/9781003232988-12.
- Johnsen, S., & Goree, K. (2021). Teaching gifted students through independent study.

 Methods and Materials for teaching the gifted.

 https://doi.org/10.4324/9781003236603-18.

GRADUATE SCHOOL

Iloilo City

- Johnson, J. (2018). Gifted learners as global citizens: Global education as a framework for gifted education curriculum. Culminating Projects in Teacher Development. 38. https://repository.stcloudstate.edu/ed_etds/38
- Johnson, J. (2018). Gifted learners as global citizens: Global education as a framework for gifted education curriculum. https://repository.stcloudstate.edu/ed etds
- Johnston, M. (2017). Best IASL conference 2017 paper: Preparing teacher librarians to support STEM education. , 1-11. https://doi.org/10.29173/IASL7145.
- Jones, M. D., & Wright, G. (2018). Innovation in the elementary classroom. https://www.researchgate.net/publication/329452803
- Jonker, H., März, V., & Voogt, J. (2020). Curriculum flexibility in a blended curriculum.

 Australasian Journal of Educational Technology.

 https://doi.org/10.14742/ajet.4926
- Juliani, A. J. (2016). The beginner's guide to design thinking in the classroom. https://www.ajjuliani.com
- Jünger, S., Payne, S., Brine, J., Radbruch, L., & Brearley, S. (2017). Guidance on conducting and reporting Delphi studies (CREDES) in palliative care:

 Recommendations based on a methodological systematic review. Palliative Medicine. 31(8), 684-706. https://doi.org/10.1177/0269216317690685
- Kanli, E. (2017). Investigating the Relations between scientific creativity, gender and scientific attitudes of gifted learners. Elementary Education Online, 16 (4), 1792-1802. doi:10.17051/ilkonline.2017.342992

GRADUATE SCHOOL

Iloilo City

- Karaaslan, G. & Turanli, N. (2020). Özel Yetenekli Öğrencilerin Matematik Öğretimi Sürecinde Üstbilişsel Bilgi ve Becerilerinin İncelenmesi. Çocuk ve Medeniyet Dergisi. https://doi.org/10.47646/cmd.2020.186
- Karnes, F. & Bean, S. (2009). Methods and materials for teaching. Third Ed. Prufrock Press. Inc. USA
- Karnes, F. A., & Bean, S. M. (Eds.) (2015). Methods and materials for teaching the gifted (4th ed.). Waco, TX: Prufrock Press.
- Karnes, F. A., & Riley, T. L. (2005). Science education for gifted. In Johnsen K S,

 Kendrick J (Eds). Developing an early passion for science through competitions.

 Prufrock Pres, Inc., USA.
- Karwowski, M. (2014). Creative mindsets: measurement, correlates, consequences.

 Psychol. Aesth. Creat. Arts. 8, 62–70. doi: 10.1037/a0034898
- Kaushik, V. & Walsh, C. A. (2019). Pragmatism as a research paradigm and its implications for Social Work research. Social Sciences, 8(9). https://doi.org/10.3390/socsci8090255
- Kaya, N. G. & Mertol, H. (2022). The importance of technology in the education of gifted in the context of 21st century skills. Journal of Computer and Education Research, 10(19), 18- 25. https://doi.org/10.18009/jcer.1061877
- Kerrigan, R. (2022). Updating CACREP's 2016 trauma curricula standards: A Delphi study. Dissertation. Regent University ProQuest Dissertations Publishing.

GRADUATE SCHOOL

Iloilo City

- Kewalramani, S., Palaiologou, I., Dardanou, M. (2020). Children's engineering design thinking processes: The magic of the ROBOTS, and the power of BLOCKS (electronics). Eurasia Journal of Mathematics, Science, and Technology Education, [s. I.]. 16(3), 2020. https://doi.org/10.29333/ejmste/113247
- Khalil, M. & Accariya, Z. (2016). Identifying "good" teachers for gifted students. Creative Education, 7, 407-418. http://dx.doi.org/10.4236/ce.2016.73040
- Khan, R. A., Spruijt, A., Mahboob, U., & van Merrienboer, J. J. G. (2019). Determining "curriculum viability" through standards and inhibitors of curriculum quality: a scoping review. BMC Medical Education, 19(1), 336.
 https://doi.org/10.1186/s12909-019-1759-8
- Kim, M. K., Roh, I. S., & Cho, M. K. (2016). Creativity of gifted students in an integrated math-science instruction. Thinking Skills and Creativity, 19, 38–48. https://doi.org/10.1016/j.tsc.2015.07.004
- Kingsley, T. L., Cassady, J. C., & Tancock, S. M. (2015). Successfully promoting 21st century online research skills: Interventions in 5th-grade classrooms. Reading Horizons: A Journal of Literacy and Language Arts, 54 (2). Retrieved from https://scholarworks.wmich.edu/reading horizons/vol54/iss2/5
- Klaver, L. T., Van Der Molen, J. W., Sins, P., & Guérin, L. (2022). Students' engagement with Socioscientific issues: Use of sources of knowledge and attitudes. Journal of Research in Science Teaching, 60(5), 1125–1161.

 https://doi.org/10.1002/tea.21828

WEST VISAYAS STATE UNIVERSITY COLLEGE OF EDUCATION GRADUATE SCHOOL

Iloilo City

- Kochoska, J. and Anastasov, B. (2020). Gifted children and their social skills. In: 2nd

 International Scientific Conference: The Gifted and Talented Progress Creators,

 28 October, Faculty of Education, Bitola.
 - https://eprints.uklo.edu.mk/id/eprint/6585/
- Koh, E., Hong, H. & Seah, J. (2014). Learner adaptivity: An initial conceptualization. 15-30. https://doi.org/10.1007/978-981-4560-17-7_2.
- Kontostavlou, E. Z., & Drigas, A. (2019). The use of Information and Communications

 Technology (I.C.T.) in gifted students. International Journal of Recent

 Contributions From Engineering, Science & IT, 7(2), 60.

 https://doi.org/10.3991/ijes.v7i2.10815
- Koştur, H. (2022). Assessment of STEM projects: Tacit perspective of Turkish science education. Journal of STEAM Education. https://doi.org/10.55290/steam.1167600.
- Koul, R., Fraser, B., Maynard, N., & Tadé, M. (2018). Evaluation of engineering and technology activities in primary schools in terms of learning environment, attitudes and understanding. Learning Environments Research, 21, 285-300. https://doi.org/10.1007/S10984-017-9255-8.
- Krajcik, S. & Czerniak, C. (2018). Teaching science in elementary and middle school: A project-based learning approach. Fifth Edition. Taylor and Fracis. New York.
- Krippendorff, K. (2019). Content analysis: An introduction to its methodology (4th ed.).

 Thousand Oaks, CA: Sage

GRADUATE SCHOOL

Iloilo City

425

Kristiani, N., Susilo, H., Rohman, F. & Aloysius, D. C. (2019). The contribution of students' metacognitive skills and scientific attitude towards their academic achievements in biology learning implementing Thinking Empowerment by Questioning (TEQ) learning integrated with inquiry learning (TEQI). International Journal of Educational Policy Research and Review, 2(9).

https://doi.org/10.15739/ijeprr.020

- Kuhn, D. (2002). What is scientific thinking and how does it develop? Blackwell Handbook of Childhood Cognitive Development, 371–393.

 doi:10.1002/9780470996652.ch17
- Ladbrook, D. (2020). Focusing effective feedback practices on developing students' 'assessment literacy'. , 81-98. https://doi.org/10.4018/978-1-7998-2901-0.ch005.
- Ladson-Billings, G. & Tate, W. F. (2016). Culturally responsive teaching in science:

 Looking back to move forward. Cultural Studies of Science Education, 11(1), 1-29.
- Laili, N., Sabila, N. S., Mariesca Vibraena, V., Jnaidi, A. R., & Dewantoro, D. A. (2020).

 Gifted education in ASEAN. Proceedings of the 2nd Early Childhood and Primary

 Childhood Education (ECPE 2020). Advances in Social Science, Education and

 Humanities Research. https://doi.org/10.2991/assehr.k.201112.002
- Lamb-Milligan, D. (2019). Classroom teachers. International journal for innovation education and research, 7, 196-201.
 - https://doi.org/10.31686/ijier.vol7.iss12.2031.

GRADUATE SCHOOL

Iloilo City

- Lankau, L., Parrish, R., Quillin, L. & Schilling, S. (n.d.). Research project guide. A handbook for teachers and students.
- La Porta Independent School District (2016). Gifted and talented guidebook for teachers.

 Retrieved from
 - https://resources.finalsite.net/images/v1571945339/lpisdorg/o0f5bwbbpuds9wgwy a5m/GTTeacherGuidebook.pdf
- Lapus, J. A. (2009). DepEd allots funding for special science school. Pasig City.

 Department of Education.
- Larraz-Rábanos, N. (2021). Development of creative thinking skills in the Teaching-Learning Process. In IntechOpen eBooks.

 https://doi.org/10.5772/intechopen.97780
- Larroder, A. & Ogawa, M. (2015). The development of a self-evaluation checklist for measuring Filipino students' science giftedness, Asia-Pacific Science Education, 1(1), 1-20. doi: https://doi.org/10.1186/s41029-015-0002-0
- Laurian-Fitzgerald, S. & Roman, A.F. (2016). The effect of teaching cooperative learning skills on developing young students' growth mindset. Journal Plus Education, 14, 68-83. https://www.semanticscholar.org/paper/THE-EFFECT-OF-TEACHING-COOPERATIVE-LEARNING-SKILLS-Laurian-Fitzgerald-Roman/479506f4fe3c08de4570b16be6856be01917003e
- Leano, A. J. & Malano, A. C. (2020). Instituting of kindergarten gifted education program in the Philippines. International Journal of Academic Research in Business

GRADUATE SCHOOL

Iloilo City

- and Social Sciences, 10(12), 662–686. https://doi.org/10.6007/ijarbss/v10-i12/8075
- Leavy, P. (2023).Research Design: Quantitative, Qualitative, Mixed Methods, Arts-Based, and Community-Based Participatory Research Approaches. 2nd Ed. The Guilford Press. ISBN 978-4625-4897-2
- Lee, C. S. & Kolodner, J. (2011). Scaffolding students' development of creative design skills: A curriculum reference model. Journal of Educational Technology & Society, 14(1), 3–15. http://www.jstor.org/stable/jeductechsoci.14.1.3
- Lee, C. & Wong, K. (2015). Developing a disposition for social innovations: An affective-socio-cognitive co-design model. International Association for Development of the Information Society.
- Lee, D. (2022). Case study on the mathematically gifted elementary students' collaborative mathematical problem solving. Korean Science Education Society for the Gifted. https://doi.org/10.29306/jseg.2022.14.3.164.
- Lee, J. & Kim, J. (2019). Development of survival swimming curriculum for prevention of drowning: Delphi method. Journal of Coastal Research, 91(sp1), 196–200. https://doi.org/10.2112/SI91-040.1
- Lepuschitz, W., Merdan, M., Koppensteiner, G., Balogh, R. & Obdrzálek, D. (2016).

 Robotics in education research and practices for robotics in STEM education,

 Proceedings of the 7th RiE 2016, Vienna, Austria, April 14-15, 2016. Robotics in Education. https://doi.org/10.1007/978-3-319-42975-5

GRADUATE SCHOOL

Iloilo City

- Lescak, E. A., O'Neill, K. M., Collu, G. M., & Das, S. (2019). Ten simple rules for providing a meaningful research experience to high school students. *PLOS Computational Biology/PLoS Computational Biology, 15*(4), e1006920. https://doi.org/10.1371/journal.pcbi.1006920
- Lesseig, K., Nelson, T., Slavit, D. & Seidel, R. (2016). Supporting middle school teachers' implementation of STEM design challenges. School Science and Mathematics, 116, 177-188. https://doi.org/10.1111/SSM.12172.
- Li, T. & Zhan, Z. (2022). A Systematic review on design thinking integrated learning in K-12 education. In Applied Sciences (Switzerland) (Vol. 12, Issue 16). MDPI. https://doi.org/10.3390/app12168077
- Liao, C., Motter, J. & Patton, R. (2016). Tech-savvy girls: Learning 21st-century skills through STEAM digital artmaking. Art Education, 69, 29 35. https://doi.org/10.1080/00043125.2016.1176492.
- Linda, E. & Afriansyah, H. (2020). Administrasi kurikulum_erna sinu linda/18231045. . https://doi.org/10.31227/osf.io/t2kc8.
- Linstone, H & Turoff, M. (2002) The Delphi method: Techniques and applications.

 Retrieved from
 - http://www.foresight.pl/assets/downloads/publications/Turoff Linstone.pdf
- Lord, K. C. (2019). Flexible learning: The design thinking process as a K-12 educational tool. Journal of Higher Education Theory and Practice, 19(7), 54–61. https://doi.org/10.33423/jhetp.v19i7.2531

GRADUATE SCHOOL

Iloilo City

- Lundy, E. L., Andresen, C. E., Freeman, S. A., Loy, D. D. & Gunn, P. J. (2017). North

 American Colleges and Teachers of Agriculture (NACTA) utilization of a modified

 Delphi method for needs assessment and curriculum revision of a senior-level beef systems management course. Journal, 61(3), 193–196.

 https://doi.org/10.2307/90021329
- Magtoto, F. O. M. (2017). Nature of nurture: Mentally superior young adults in the Philippines. International Journal of Research Studies in Psychology, 6(1), 83–97. https://doi.org/10.5861/ijrsp.2017.1597
- Makkonen, T., Tirri, K. & Lavonen, J. (2021). Engagement in learning physics through project-based learning: A case study of gifted finish upper-secondary-level students. Journal of Advanced Academics, 32, 501 532.

 https://doi.org/10.1177/1932202X211018644.
- Mamnoon, I. "Nurturing a Creative Mindset" (2013). Creative studies graduate Student

 Master's Projects. Paper 178

 https://digitalcommons.buffalostate.edu/cgi/viewcontent.cgi?article=1182&context

 =creativeprojects
- Maranan, V. (2017). Basic process skills and attitude toward science: Inputs to an enhanced students' cognitive performance. ED579181.pdf
- Margot, K.C., Kettler, T. Teachers' perception of STEM integration and education: a systematic literature review. IJ STEM Ed 6, 2 (2019).

 https://doi.org/10.1186/s40594-018-0151-2

GRADUATE SCHOOL

Iloilo City

- Marks, J. (2017). The impact of a brief design thinking intervention on students' design knowledge, iterative dispositions, and attitudes towards failure. Dissertation.

 Academic Commons.columbia.edu. Columbia University Libraraies.

 https://doi.org/10.7916/D8X92PN2
- Masharipova, F. (2020). Effective scaffolding techniques in developing reading competence on CBI domain. , 7, 482-486. https://doi.org/10.31838/jcr.07.13.86.
- Matei, A. & Tirziu, A. (2017). Collaborative learning as a tool for social innovation., 7032-7040. https://doi.org/10.21125/edulearn.2017.0265.
- Matsko, V. & Thomas, J. (2014). The problem is the solution: creating original problems in gifted mathematics classes. Journal for the Education of the Gifted, 37(2), 153–170.
- McCarthy, B. (1980). The 4MAT system: teaching to learning styles with right/left mode techniques. Barrington, Ill.: EXCEL, inc. Retrieved from https://proxy.library.kent.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&Aut hType=ip&db=cat02286a&AN=kent.b2188322&site=eds-live&scope=site
- McGarry, B. J., Theobald, K., Lewis, P. & Coyer, F. (2015). Flexible learning design in curriculum delivery promotes student engagement and develops metacognitive learners: An integrated review. Nurse Education Today, 35(9), 966–973. https://doi.org/10.1016/j.nedt.2015.06.009

GRADUATE SCHOOL

Iloilo City

- 431
- Medwell, J. & Wray, D. (2020) "Concept-based teaching and learning: A review of the research literature". In Gómez Chova, L., López Martínez, A. & Candel Torres, I. (Eds) Proceedings of the 13th International Conference of Education, Research and Innovation (ICERI2020), ISBN: 978-84-09-24232-0, Valencia: IATED Academy, pp. 486-496 https://www.literacyworld.info/PDFs/2020%20Concept-based%20teaching%20and%20learning.pdf
- Mengual-Andrés, S., Roig-Vila, R., & Mira, J. B. (2016). Delphi study for the design and validation of a questionnaire about digital competences in higher education.

 International Journal of Educational Technology in Higher Education, 13(1).

 https://doi.org/10.1186/s41239-016-0009-y
- Meyer, J. and Land, R. (2003). Threshold concepts and troublesome knowledge:

 linkages to ways of thinking and practicing within disciplines. Occassional report

 4. May 2004. ETL Project. University of Edinburgh
- Meyer, M., Lee, L., Crutchfield, K., Murphy, L., Austin, M., Ottwein, J., & Rinn, A. (2020). Viewpoints in gifted education research and practice: an overview of three major paradigms. Viewpoints in Gifted Education Research and Practice: An Overview of Three Major Paradigms. TEMPO+. Texas Association for the Gifted and Talented
- Moeed, A. (2013). Science investigation that best supports student learning: Teachers understanding of science investigation. International Journal of Environmental and Science Education, 8(4), pp 537–559. https://doi.org/10.12973/ijese.2013.218a

GRADUATE SCHOOL

Iloilo City

- Mohammed, S. H. & Kinyo, L. (2020). The role of constructivism in the enhancement of social studies education. Journal of Critical Reviews, 7, 249-256. https://doi.org/10.31838/jcr.07.07.41
- Morrison, J. A. (2014). Scientists' participation in teacher professional development: the impact on fourth to eighth grade teachers' understanding and implementation of inquiry science. International Journal of Science and Mathematical Education/International Journal of Science and Mathematics Education, 12(4), 793–816. https://doi.org/10.1007/s10763-013-9439-3
- Mukhopadhyay, R. & Sen, M. K. (2013). Scientific creativity- a new emerging field of research: Some considerations. International Journal of Education and Psychological Research, 2(1), 1–9. https://ijepr.org/panel/assets/papers/ij1...pdf
- Mustafa, M., Zain, A., & Alias, A. (2018). The context of childrenâs learning and development: Sociocultural perspectives. International Journal of Academic Research in Progressive Education and Development, 6.

 https://doi.org/10.6007/IJARPED/V6-I4/3766.
- Myskow, G., Bennett, P., Yoshimura, H., Gruendel, K., Marutani, T., Hano, K., & Li, T. (2018). Fostering collaborative autonomy: The roles of cooperative and collaborative learning. Relay Journal. https://doi.org/10.37237/relay/010212.
- Narikbayeva, L., Kalimoldayeva, A., Ibrayeva, K., Madalieva, Z., Ussenova, A. (2018).

 Development and implementation of the project «A Gifted Student». Revista

 Espacios: Education, 39 (10) p. 32.

GRADUATE SCHOOL

Iloilo City

- National Council of Teachers of Mathematics (2014). Procedural fluency in mathematics:

 A position of the National Council of Teachers of Mathematics. Retrieved from

 https://www.nctm.org/Standards-and-Positions/Position-Statements/Procedural-Fluency-in-Mathematics/.
- New Found Land and Labrador Department of Education (2013). Teaching students who are gifted and talented: A handbook for teachers. Retrieved from https://www.gov.nl.ca/education/files/k12 studentsupportservices publications te achingstudentsgiftedtalented.pdf
- Ngiamsunthorn, P. S. (2020). Promoting creative thinking for gifted students in undergraduate mathematics. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 5(1), 13–25.

 https://doi.org/10.23917/jramathedu.v5i1.9675
- Nguyen, T. P. L., Nguyen, T. H. & Tran, T. K. (2020). STEM education in secondary schools: Teachers' perspective towards sustainable development. Sustainability, 12(21), 8865. https://doi.org/10.3390/su12218865
- Niederberger, M. & Spranger, J. (2020). Delphi technique in health sciences: A map. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00457
- Novak, J. D. (2019). Concept-based learning. In routledge eBooks (pp. 100–113). https://doi.org/10.4324/9780429313301-9
- Nunes, F. P., Molinari, M., Fialho, A. F. P. & Santana, C. (2021). Design thinking as a tool to the teaching of children, and teachers in the 21st century. International

GRADUATE SCHOOL

Iloilo City

- Osman, K. (2013). Scientific inventive thinking skills in children. In: Carayannis, E.G. (eds) Encyclopedia of Creativity, Invention, Innovation and Entrepreneurship. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3858-8 389
- Özgür, S., & Yilmaz, A. (2017). The effect of inquiry-based learning on gifted and talented students' understanding of acids-bases concepts and motivation. Journal of Baltic Science Education, 16.
- O'Reilly, C. (2013). Gifted education in Ireland. Journal for the Education of the Gifted, 36(1), 97–118. https://doi.org/10.1177/0162353212470039
- Padilla, M. (n.d.) The science process skills | NARST. https://narst.org/research-matters/science-process-skills
- Painter, D. (2018). DigitalCommons@CSP DigitalCommons@CSP Using design thinking in mathematics for middle school using design thinking in mathematics for middle school students: A multiple case study of teacher perspectives students: A multiple case study of teacher perspectives.
 - https://digitalcommons.csp.edu/cup commons grad edd
- Paris, E. (2016). Grounded on Chimera: A cognitive strategy towards the development if creative abd critical thinking models for biology education. Unpublished dissertation. WVSU
- Park, S., Park, K., & Choe, H. (2005). The relationship between thinking styles and scientific giftedness in Korea. The Journal of Secondary Gifted Education, 16, 2/3, 87–97.

GRADUATE SCHOOL

Iloilo City

- Parr, J., & Stevens, T. (2019). Challenges of equity and discrimination in the education of gifted children (pp. 1–12). https://doi.org/10.1007/978-3-319-69902-8 21-1
- Päivärinta, T., Pekkola, S., & Moe, C. E. (2011). Grounding theory from Delphi studies. In International Conference on Information Systems ICIS 2011 Proceedings, Shanghai, China, 4.-7.12.2011 (pp. 1-14). (International Conference on Information Systems ICIS). AIS.
 - http://aisel.aisnet.org/icis2011/proceedings/researchmethods/4/
- Pawilen, G. T. (2018). Development and implementation of a science-based integrated curriculum for nurturing the gifted potentials of young Filipino children. Asia-Pacific Journal of Research in Early Childhood Education, 12(3), 45–67.

 https://doi.org/10.17206/apjrece.2018.12.3.45
- Pawilen, G., & Manuel, S. J. (2018). A proposed model and framework for developing a curriculum for the gifted in the Philippines. International Journal of Curriculum and Instruction,10(2), pp 118-141.EJ1207237
- Phavadee, S. (2020). The way of teaching toward different students' learning styles /

 Teaching that takes into account different learning styles.

 https://www.semanticscholar.org/paper/The-way-of-teaching-toward-different-students'-that-Phavadee/5d5bb764a6af0aa545840571ee2aa1f1425fb68d
- Pill, J. (1971). The Delphi method: Substance, context, a critique and an annotated bibliography. Socio-Economic Planning Science, 5, 57-71. https://doi.org/10.1016/0038-0121(71)90041-3

GRADUATE SCHOOL

Iloilo City

- Pincham, L. & McTague, B. (2021). Teaching collaboration skills to foster socialemotional learning. IGI Global. https://doi.org/10.4018/978-1-7998-4102-9.ch006
- Piske, F. H. R., Stoltz, T., Camargo, D. de, Vestena, C. L. B., Machado, J. M., de Freitas, S. P., Dias, C. L., & Taucei, J. dos R. (2017). Creation process during learning of gifted students: Contributions from Jean Piaget. Creative Education, 08(04), 505–513. https://doi.org/10.4236/ce.2017.84039
- Piske, F., Stoltz, T., Camargo, D., Vestena, C., Machado, J., Freitas, S., Dias, C., & Taucei, J. (2017). Creation process during learning of gifted students:

 Contributions from Jean Piaget. Creative Education, 8, 505-513.

 https://doi.org/10.4236/CE.2017.84039.
- Plattner, H., Meinel, C., & Weinberg, U. (2009). Design thinking: Making design thinking foundational. Mi-Fachverlag.
- Plucker, J.A., Fickes, K.G. (2021). Talent development. In: The Palgrave Encyclopedia of the Possible. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-98390-5-55-1
- Polat, B., & Kutlu, O. (2022). Investigation of the effectiveness of the research skills teaching program. International Journal of Assessment Tools in Education, 9(1), 39–60. https://doi.org/10.21449/ijate.1058302
- Pornell, J., Balinas, V., & Saldaña, G. (2011). Nearest-Integer Response from Normally-Distributed Opinion Model for Likert Scale. *The Philippine Statistician Vol 60*, *60*, 87–104. https://www.psai.ph/docs/publications/tps/tps_2011_60_1_6.pdf

GRADUATE SCHOOL

Iloilo City

- Prasad, J., Goswami, A., Kumbhani, B., Mishra, C., Tyagi, H., jun, J., Choudhary, K., Kumar, M., James, N., Reddy, V., Singh, S., Kashyap, D., Sohoni, M., Gupta, N., Raina, P., Saha, S., Mittal, S., Chakraborty, S., & Das, S. (2018). Engineering curriculum development based on education theories. Current Science, 114, 1829-1834. https://doi.org/10.18520/CS/V114/I09/1829-1834.
- Presidential Decree 603 (1974) The child and youth welfare code.

 https://www.officialgazette.gov.ph/1974/12/10/presidential-decree-no-603-s-1974/
- Priyayi, D. F., Airlanda, G. S., & Banjarnaroh, D. R. V. (2020). Students' scientific attitude during the implementation of innovative green garden-based education.

 JPBI (Jurnal Pendidikan Biologi Indonesia), 6(2), 293-304. https://doi.org/10.22219/jpbi.v6i2.11402
- Puente-Díaz, R., & Cavazos-Arroyo, J. (2017). The influence of creative mindsets on achievement goals, enjoyment, creative self-efficacy and performance among business students. Thinking Skills and Creativity, 24, 1–11.

 https://doi.org/10.1016/j.tsc.2017.02.007
- Qiu, C., Tan, J., Liu, Z. et al. (2022). Design theory and method of complex products: A review. Chin. J. Mech. Eng. 35, 103. https://doi.org/10.1186/s10033-022-00779-0
- Rana, J., Sullivan, A., Brett, M., Weinstein, A. R., & Atkins, K. M. (2018). Defining curricular priorities for student-as-teacher programs: A national Delphi study.

WEST VISAYAS STATE UNIVERSITY COLLEGE OF EDUCATION GRADUATE SCHOOL

Iloilo City

439

Medical Teacher, 40(3), 259–266.

https://doi.org/10.1080/0142159X.2017.1401216

Regional Agreement of SSES Coordinators and Division Supervisors (2018)

Republic Act No. 10533 (2012). Enhanced basic education act.

Republic Act No. 11293 (2019). Philippine innovation act.

- Reis, S. & Gubbins, J. (2017). Comprehensive Program design. In Eckert, R. & Robins, J. (Eds.) Designing Services and Programs for High-Ability Learners: A Guidebook for Gifted Education (2nd ed). Corwin
- Reiss, M., & White, J. (2014). An aims-based curriculum illustrated by the teaching of science in schools. Curriculum Journal, 25, 76 89.

 https://doi.org/10.1080/09585176.2013.874953.
- Reyes, M. E. S., Layno, K. J. T., Castañeda, J. R. E., Collantes, A. A., Sigua, M. A. D., & McCutcheon, L. E. (2015). Perfectionism and its relationship to the depressive feelings of gifted Filipino adolescents. North American Journal of Psychology, 17(2), 317–322. Retrieved from https://www.researchgate.net/profile/Lynn-Mccutcheon/publication/322470242 Perfectionism and its relationship to the depressive feelings of gifted Filipino adolescents/links/5a665845a6fdccb61c5a7572 /Perfectionism-and-its-relationship-to-the-depressive-feelings-of-gifted-Filipino-adolescents.pdf

GRADUATE SCHOOL

Iloilo City

- Ritter, O. N. (2017). Book review: Philosophy of STEM education A critical investigation. Contemporary Educational Technology, 8(1). https://doi.org/10.30935/cedtech/6189
- Rizk, N., Attia, K., & Al-Jundi, A. (2017). The impact of metacognition strategies in teaching mathematics among innovative thinking students in primary school, Rafha, KSA. International Journal of English Linguistics, 7, 103. https://doi.org/10.5539/IJEL.V7N3P103.
- Robbrecht, M., Norga, K., Van Winckel, M., Valcke, M., & Embo, M. (2022).

 Development of an integrated competency framework for postgraduate pediatric training: a Delphi study. European Journal of Pediatrics, 181(2), 637–646.

 https://doi.org/10.1007/s00431-021-04237-2
- Robertson, S., & Pfeiffer, S. (2016). Development of a procedural guide to implement response to intervention (RtI) with high-ability learners. Roeper Review, 38, 23 9. https://doi.org/10.1080/02783193.2015.1112863.
- Rodliyah, I., Saraswati, S., & Sa'adah, N. (2018). The investment of character building of elementary school students through mathematical learning with experiential based on game strategy. https://doi.org/10.5220/0008524605100516.

GRADUATE SCHOOL

Iloilo City

- Roldan, A. H. (1983). A profile of the gifted Filipino child and implications for curriculum development. Gifted International, 2(1), 155–162.

 https://doi.org/10.1080/07387849.1983.11674816
- Rusmini, Suyono, & Agustini, R. (2021). Analysis of science process skills of chemical education students through Self-project Based Learning (SjBL) in the Covid-19 pandemic era. Journal of Technology and Science Education, 11(2), 371-387. https://doi.org/10.3926/jotse.1288
- Sabirova, E. G., Zakirova, V. G., & Masalimova, A. R. (2016). Development of junior pupils research skills in interrelation with universal learning activities. International Journal of Environmental and Science Education, 11(4), 505–514. https://doi.org/10.12973/ijese.2016.321a
- Sak, U., & Ayas, M. B. (2013). Creative scientific ability test (C-SAT): A new measure of scientific creativity. Psychological Test and Assessment Modeling, 55(3), 316-329.
- Safi'i, A., Muttaqin, I., Sukino, Hamzah, N., Chotimah, C., Junaris, I., & Rifa'i, M. K. (2021). The effect of the adversity quotient on student performance, student learning autonomy and student achievement in the COVID-19 pandemic era: evidence from Indonesia. Heliyon, 7(12), e08510. https://doi.org/10.1016/j.heliyon.2021.e08510
- Salcedo, R. (2022). Power Point Presentation, Regional Summit of Special Science

 Elementary Schools, Science and Technology and Engineering, Regional Science

 High School, and Legislated Science High School Implementers last July 5-7, 2022

GRADUATE SCHOOL

Iloilo City

- Sánchez-Escobedo, P., Valdés-Cuervo, A., Contreras-Olivera, G., García-Vázquez, F., & Durón-Ramos, M. (2020). Mexican teachers' knowledge about gifted children: Relation to teacher teaching experience and training. Sustainability, 12, 4474. https://doi.org/10.3390/su12114474.
- Sanchez, J. M. P. (2022). Development of science research culture in basic education: A theory generation. *Recoletos Multidisciplinary Research Journal*, *10*(1), 131-140. https://doi.org/10.32871/rmrj2210.01.10
- Sandri, O. J. (2013). Exploring the role and value of creativity in education for sustainability. Environmental Education Research, 19, 765–778.

 doi:10.1080/13504622.2012.749978.
- Sanzhez, A. (2021). Using the Delphi technique to determine objectives and topical outline for a pharmaceutical care course: An experience from the Cuban higher education system. https://doi.org/10.1186/s12909-021-02583-1
- Sapad, R. (2019). Research teaching practices in special science class. Ascendens Asia Journal of Multidisciplinary Research Abstracts, 3(2). Retrieved from https://ojs.aaresearchindex.com/index.php/AAJMRA/article/view/9899
- Saunders, L., & Wong, M. A. (2020, August 1). Critical Pedagogy: challenging bias and creating inclusive classrooms. Pressbooks.
 - https://iopn.library.illinois.edu/pressbooks/instructioninlibraries/chapter/criticalpedagogy-challenging-bias-and-creating-inclusive-classrooms/

GRADUATE SCHOOL

Iloilo City

- Schroth, S., & Helfer, J. (2017). Gifted & green. Gifted Child Today, 40, 14 28. https://doi.org/10.1177/1076217516675903.
- Scott, Cynthia, L. S. (2015). The futures of learning 2: What kind of learning for the 21st century? (ERF Working Paper No. 14). Paris: UNESCO Education Research and Foresight. https://unesdoc.unesco.org/ark:/48223/pf0000242996
- SEI-DOST & UP NISMED, (2011). Science framework for Philippine basic education.

 Manila: SEI-DOST & UP.
- Sen, C. Sonay, Z. & Kiray, A. T. (2021). Computational thinking skills of gifted and talented students in integrated STEM activities based on the engineering design process: The case of robotics and 3D robot modeling. Thinking Skills and Creativity. https://doi.org/10.1016/j.tsc.2021.100931.
- Seo, H.-A. (2016). Developing science curriculum for gifted learners in South Korea.

 Curriculum for High Ability Learners, 101–115. doi:10.1007/978-981-10-2697-3_7
- Sevian, H., Dori, Y., & Parchmann, I. (2018). How does STEM context-based learning work: What we know and what we still do not know. International Journal of Science Education, 40, 1095 1107.
 - https://doi.org/10.1080/09500693.2018.1470346.
- Shaunessy-Dedrick, E. (2018). Looking back and looking forward: Curriculum for gifted and talented students. , 149-161. https://doi.org/10.1007/978-3-319-77004-8 10.

GRADUATE SCHOOL

Iloilo City

- Shearer, C. (2020). Multiple intelligences in gifted and talented education: Lessons learned from neuroscience After 35 Years. Roeper Review, 42, 49 63. https://doi.org/10.1080/02783193.2019.1690079.
- Shek, D.T.L.; Cheung, A.C.K.; Hui, A.N.N.; Leung, K.H.; Cheung, R.S.H. Development and Evaluation of a Pioneer School-Based Gifted Education Program (Project GIFT) for Primary and Secondary Students in Hong Kong. *Int. J. Environ. Res. Public Health* 2022, *19*, 4832. https://doi.org/ 10.3390/ijerph19084832
- Shepardson, D. P. (2015). Mediating meaning in the social world of the science classroom. https://ejrsme.icrsme.com/article/view/8256
- Shively, K., Stith, K.M., & Rubenstein, L.D. (2018). Measuring what matters: Assessing creativity, critical thinking, and the design process. Gifted Child Today, 41, 149 158. DOI:10.1177/1076217518768361
- Shnief, H. A. (2022). Why research skills are key to your children's future. Wellbeing.

 Cairo West Online. Retrieved from <a href="https://cairowestmag.com/why-research-skills-are-key-to-your-childrens-future/#:~:text=Research%20is%20an%20essential%20applied%20skill%3B%20one%20that,an%20opportunity%20or%20even%20challenge%20the%20data%20itself.
- Shore, B. (2021). Context matters in gifted education. Education Sciences. https://doi.org/10.3390/educsci11080424.

GRADUATE SCHOOL

Iloilo City

- Siegle, D., Gubbins, E., O'Rourke, P., Langley, S., Mun, R., Luria, S., Little, C., McCoach, D., Knupp, T., Callahan, C., & Plucker, J. (2016). Barriers to underserved students' participation in gifted programs and possible solutions. Journal for the Education of the Gifted, 39, 103 131. https://doi.org/10.1177/0162353216640930.
- Silva Pacheco, C., & Iturra Herrera, C. (2021). A conceptual proposal and operational definitions of the cognitive processes of complex thinking. Thinking Skills and Creativity, 39(2), 100794. https://doi.org/10.1016/j.tsc.2021.100794
- Simeon, M.I, Samsudin, M.A., Yakob, N. (2020) .Effect of design thinking approach on students' achievement in some selected physics concepts in the context of STEM learning. International Journal of Technology, and Design Education,[s. I.]. https://doi.org/10.1007/s10798-020-09601-1
- Simonton, D.K. (2013). Scientific creativity as combinatorial process. In: Carayannis, E.G. (eds) Encyclopedia of Creativity, Invention, Innovation and Entrepreneurship. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3858-8 388
- Singer, F. M., Sheffield, L. J., Freiman, V., & Brandl, M. (2018). Erratum to: Research on and activities for mathematically gifted students. https://doi.org/10.1007/978-3-319-39450-3 2
- Sitlington, H.n & Coetzer, A. (2015). Using the Delphi technique to support curriculum development. Education + Training. 57. 306-321. 10.1108/ET-02-2014-0010.

GRADUATE SCHOOL

Iloilo City

- Skulmoski, G., Hartman, F. T., & Kran, J. (2007). The Delphi method for graduate research. Journal of Information Technology Education, 6, 1–21. https://www.jite.org/documents/Vol6/ JITEv6p001-021Skulmoski212.pdf
- Sobia, D., Shah, S., Asif, D., Shah, A., & Khaskhelly, N. (2018). Pragmatism research paradigm: A philosophical framework of advocating methodological pluralism in social science research. Grassroots , 52(1), 90–102. Retrieved from https://sujoold.usindh.edu.pk/index.php/Grassroots/article/view/4610/2905
- Soderlund, A. (2020). Implementing 21st century learning and innovation skills in implementing 21st century learning and innovation skills in classrooms. https://nwcommons.nwciowa.edu/education_masters
- Spoon, R., Rubenstein, L., Shively, K., Stith, K., Ascolani, M., & Potts, M. (2020).

 Reconceptualizing professional learning within the gifted field: Exploring the instruct to innovate model. Journal for the Education of the Gifted, 43, 193 226. https://doi.org/10.1177/0162353220933001.
- Stepanek, J. (1999). Meeting the needs of gifted students: Differentiating mathematics and science instruction. The Inclusive Classroom, 2–42. ED444306
- Stewart, D., & Shamdasani, P. (1980). Focus groups: Theory & practice, Vol. 20: Applied social research methods series. Newbury Park, CA: Sage
- Strear, M. M., Murdock Bishop, J. L., & Helm, H. M. (2019). CACREP accreditation simulation: Transformative learning in counselor education. The Journal of

GRADUATE SCHOOL

Iloilo City

- Counselor Preparation and Supervision, 12(3). Retrieved from https://repository.wcsu.edu/jcps/vol12/iss3/3
- Suarta, I. M., Suwintana, I. K., Sudhana, I. F. P., & Hariyanti, N. K. D. (2017).

 Employability skills required by the 21st century workplace: A literature review of labor market demand. Advances in Social Science, Education and Humanities

 Research,. https://doi.org/10.2991/ictvt-17.2017.58
- Subotnik, R. F., Olszewski-Kubilius, P., & Worrell, F. C. (2011). Rethinking giftedness and gifted education: A Proposed direction forward based on psychological science. Psychological Science in the Public Interest, Supplement, 12(1), 3–54. https://doi.org/10.1177/1529100611418056
- Sultana, S. G., & Reed, P. A. (2017). Curriculum for an introductory computer science course: Identifying recommendations from academia and industry. Source: The Journal of Technology Studies, 43(2), 80–92. https://doi.org/10.2307/90023144
- Swank, J. M., & Houseknecht, A. (2019). Teaching competencies in counselor education:

 A Delphi study. Counselor Education and Supervision, 58(3), 162–176.

 https://doi.org/10.1002/ceas.12148sz.bg/tsj/Volume2_4/EXPERIENTIAL%20LEAR_NING.pdf
- Synytsia, A. (2020). Education as a means of affirming democracy values in John

 Dewey's pragmatism: modern perspective.

 https://www.semanticscholar.org/paper/Education-as-a-means-of-affirming-democracy-values-Synytsia/bece016547fa87237104732a513fd99e61647fe0

GRADUATE SCHOOL

Iloilo City

- Tan, L., & Tan, K. (2017). Theory, research and conceptions of curriculum for high ability learners: Key findings, issues and debates., 11-24. https://doi.org/10.1007/978-981-10-2697-3_2.
- Tang, K. H. D. (2023). Student-centered approach in teaching and learning: What does it really mean? Acta Pedagogia Asiana, 2(2), 72–83. https://doi.org/10.53623/apga.v2i2.218
- Tashakkori, A. & Tedddlie, C. (1998). Mixed methods methodology: Combining qualitative and quantitative approaches. Applied Social Research Methods Series. P46; Thousand Oaks: Sage Publications.
- Teo, C. L., Aghazadeh, S., & Ho, J. (2021). Gifted learners and how to develop them.

 (NIE Working Paper Series No. 21). Singapore: National Institute of Education.

 Retrieved from https://repository.nie.edu.sg/bitstream/10497/23491/3/niewp-21.pdf
- Texas Education Agency (2006). A suggested scaffolding of research skills. Retrieved from http://jukebox.esc13.net/01 TeacherToolkit 2017/HTML files/gt research skills
 D.html
- Thangaratinam, S., & Redman, C. (2005). The Delphi technique. The obstetrician & gynecologist, 7(2), 120-125. https://doi.org/10.1576/toaq.7.2.120.27071
- Thanh, N. T., & Duong, N. T. T. (2021). Designing experiential learning activities for students in directions of STEM education at primary schools. Journal of Physics:

GRADUATE SCHOOL

Iloilo City

449

Conference Series, 1835(1), 012056. https://doi.org/10.1088/1742-6596/1835/1/012056

- Thomas, M., & Kothari, R. (2015). A study on the effectiveness of a strategy based on cooperative learning for science teaching in class VII. MIER Journal of Educational Studies, Trends and Practices, 5, 123-136.

 https://doi.org/10.52634/MIER/2015/V5/I2/1463.
- Timmerman, B. C., Feldon, D., Maher, M., Strickland, D., & Gilmore, J. (2013).

 Performance-based assessment of graduate student research skills: timing,

 trajectory, and potential thresholds. Studies in Higher Education, 38(5), 693–710.

 doi:10.1080/03075079.2011.590971
- Tirri, K. (2017). Teacher education is the key to changing the identification and teaching of the gifted. Roeper Review, 39, 210 212. https://doi.org/10.1080/02783193.2017.1318996.
- Tornell, J., & Tornell, J. G. (2017). Modifying curriculum for enriched and gifted students. Retrieved from https://digitalcommons.hamline.edu/hse-all-
- Trúchly, P., Medvecky, M., Podhradský, P., & Mawas, N. (2019). STEM education supported by virtual laboratory incorporated in self-directed learning process.

 Journal of Electrical Engineering, 70, 332 344. https://doi.org/10.2478/jee-2019-0065.

GRADUATE SCHOOL

Iloilo City

- Tu, J. C., Liu, L. X., & Wu, K. Y. (2018). Study on the learning effectiveness of Stanford design thinking in integrated design education. Sustainability (Switzerland), 10(8). https://doi.org/10.3390/su10082649
- Tu, C., Sujo-Montes, L., & Yen, C. J. (2014). Gamification for learning. In Springer eBooks (pp. 203–217). https://doi.org/10.1007/978-3-319-00152-4_13
- Turner, A., Logan, M., & Wilks, J. (2021). Planting food sustainability thinking and practice through STEM in the garden. International Journal of Technology and Design Education, 32, 1413 1439. https://doi.org/10.1007/s10798-021-09655-9.
- Turner, R., Schoeneberg, C., Ray, D., & Lin, Y. (2020). Establishing play therapy competencies: A Delphi study. International Journal of Play Therapy, 29(4), 177-190. https://doi:10.1037/pla0000138
- Ülger, B. B., & Çepni, S. (2020). Gifted education and STEM: A thematic review. Journal of Turkish Science Education, 17(3), 443–467. https://doi.org/10.36681/tused.2020.38
- UNESCO International Bureau of Education (2023). Curriculum alignment. Retrieved from http://www.ibe.unesco.org/en/glossary-curriculum-terminology/c/curriculum-alignment
- Ural, E., & Gençoğlan, D. M. (2020). The effect of argumentation-based science teaching approach on 8th graders' learning in the subject of acids-bases, their attitudes towards science class and scientific process skills. Interdisciplinary Journal of

GRADUATE SCHOOL

Iloilo City

451

Environmental and Science Education, 16(1), 1–15. doi: https://doi.org/10.29333/ijese/6369

- Vaishali, & Misra, P. K. (2020). Implications of constructivist approaches in the classrooms: The role of the teachers. Asian Journal of Education and Social Studies, 7(4), 17–25. https://doi.org/10.9734/ajess/2020/v7i430205
- van Alten D. C. D., Phielex C., Janssen J., & Kester L. (2020). Self-regulated learning support in flipped learning videos enhances learning outcomes. Computers & Education, 158(December), Article 104000.
 - https://doi.org/10.1016/j.compedu.2020.104000
- Vankova, D. & Videnova, J. (2019). Delphi technique for curriculum development, ICERI2019 Proceedings, pp. 6167-6171. https://doi.org/.10.21125/iceri.2019.1484
- Vantassel-Baska, J. (2016). Creativity and innovation., 221-223.
 - https://doi.org/10.1007/978-94-6300-503-6_13.
- Vasanthakumari, S. (2019). Soft skills and its application in workplace. World Journal of Advanced Research and Reviews, 3(2), 066–072. https://doi.org/10.30574/wjarr.2019.3.2.0057
- Vereijken, M. W. C., Van Der Rijst, R. M., De Beaufort, A. J., Van Driel, J. H., & Dekker, F. W. (2016). Fostering first-year student learning through research integration into teaching: Student perceptions, beliefs about the value of research and student achievement. *Innovations in Education and Teaching International*, 55(4), 425–432. https://doi.org/10.1080/14703297.2016.1260490

GRADUATE SCHOOL

Iloilo City

- 452
- Vidergor, H. & Harris, C.R. (Eds.)(2015). Applied practice for educators of gifted and able learners. *Sense Publisher*
- Vinogradova, N. F. & Rydze O. A. (2021). Research activities as a mean of intellectual development of primary schoolchildren. Primary Education. (1), 22-30. DOI: https://doi.org/10.12737/1998-0728-2021-9-1-22-30
- Vista, A. (2015). Equity in cross-cultural gifted screening from a Philippine perspective: A review of literature. Gifted Education International, 31(3), 232–243. https://doi.org/10.1177/0261429414526657
- Vyas, K., & Vashishtha, K. C. (2015). Effectiveness of teaching based on brain research with reference to academic achievement of secondary school students.
 International Journal of Students' Research in Technology & Management, 1(4), 383–397. Retrieved from https://mgesjournals.com/ijsrtm/article/view/82
- Wahyuningsih, S., Nurjanah, N. E., Rasmani, U. E. E., Hafidah, R., Pudyaningtyas, A. R., & Syamsuddin, M. M. (2020). STEAM learning in Early Childhood Education: A literature review. International Journal of Pedagogy and Teacher Education, 4(1), 33. https://doi.org/10.20961/ijpte.v4i1.39855
- Wai, J. & Lovett, B. (2021). Improving gifted talent development can help solve multiple consequential real-world problems. Journal of Intelligence, 9.
 https://doi.org/10.3390/jintelligence9020031.
- Warner, S. A., Gemmill, P. R., & Council on Technology Teacher Education (U.S.).

 (2011). Creativity and design in technology & engineering education. Council on

GRADUATE SCHOOL

Iloilo City

453

- Weber, C., & Mofield, E. (2023). Considerations for professional learning supporting teachers of the gifted in pedagogical content knowledge. Gifted Child Today, 46, 128 141. https://doi.org/10.1177/10762175221149258.
- Wester, K. L., & Borders, L. D. (2014). Research competencies in counseling: A Delphi study. Journal of Counseling and Development, 92, 447–458.

 http://dx.doi.org/10.1002/j.1556-6676.2014 .00171.x
- Wilson, H. (2018). Integrating the arts and STEM for gifted learners. Roeper Review, 40, 108 120. https://doi.org/10.1080/02783193.2018.1434712.
- Woodcock, T., Adeleke, Y., Goeschel, C., Pronovost, P., & Dixon-Woods, M. (2020b). A modified Delphi study to identify the features of high quality measurement plans for healthcare improvement projects. *BMC Medical Research Methodology*, 20(1). https://doi.org/10.1186/s12874-019-0886-6
- Wong-Fernandez, B., & Bustos-Orosa, A. (2007). Conceptions of giftedness among

 Tagalog speaking Filipinos. In S. N. Phillipson, & M. McCann (Eds.), Conceptions of
 giftedness: Sociocultural perspectives (pp. 169–196). Mahwah, NJ: Lawrence

 Erlbaum Associates.

GRADUATE SCHOOL

Iloilo City

- World Bank (2016). Building better learning environments in the Philippines.

 https://openknowledge.worldbank.org/server/api/core/bitstreams/516be80d-cc41-5253-9c2f-6241e5102923/content
- Worrell, F., Subotnik, R., Olszewski-Kubilius, P., & Dixson, D. (2019). Gifted students.

 Annual review of psychology, 70, 551-576. https://doi.org/10.1146/annurev-psych-010418-102846.
- Xu, K. M., Koorn, P., de Koning, B., Skuballa, I. T., Lin, L., Henderikx, M., Marsh, H. W., Sweller, J., & Paas, F. (2021). A growth mindset lowers perceived cognitive load and improves learning: Integrating motivation to cognitive load. Journal of Educational Psychology, 113(6), 1177–1191. https://doi.org/10.1037/edu0000631
- Yalçın, V. (2022). Design thinking model in early childhood education. International Journal of Psychology and Educational Studies, 9(1), 196–210. https://doi.org/10.52380/ijpes.2022.9.1.715
- Yang, C. M., & Man, H. T. T. (2018). Applying design thinking process in student's project: A case of EGF products. MATEC Web of Conferences, 201, 1–13. https://doi.org/10.1051/matecconf/201820104003
- Yang, D., & Feng, S. (2022). A collaborative approach to integrate computational thinking in an integrated STEM curriculum. 2022 IEEE Integrated STEM Education Conference (ISEC), 238-240. https://doi.org/10.1109/ISEC54952.2022.10025038.

GRADUATE SCHOOL

Iloilo City

- Yang, K.-K., Lee, L., Hong, Z.-R., & Lin, H. (2016). Investigation of effective strategies for developing creative science thinking. International Journal of Science Education, 38(13), 2133–2151. doi:10.1080/09500693.2016.1230685
- Yliverronen, V., Marjanen, P., & Seitamaa-Hakkarainen, P. (2018). Peer collaboration of six-year-olds when undertaking a design task. ResearchGate.

 https://www.researchgate.net/publication/357096103 Peer Collaboration of Six-year olds when Undertaking a Design Task
- Yu, H., Chen, H., & Chen, Y. (2019). The hands-on STEM curriculum design promoting science learning and career self-efficacy for gifted girls. Proceedings of the 3rd International Conference on Education and Multimedia Technology.

 https://doi.org/10.1145/3345120.3345135.
- Yuen, M., Chan, S., Chan, C., Fung, D., Cheung, W., Kwan, T., & Leung, F. (2018).

 Differentiation in key learning areas for gifted students in regular classes. Gifted Education International, 34, 36 46. https://doi.org/10.1177/0261429416649047.
- Yusof, R., Fatimah Mohd Yassin, S., Radzi, A., Hassan, S., Nor Azman, N., Azhari, A., Idris, F., Author, C., Negara, P., & Malaysia, U. (2021). Development of diverse research innovative mind-set (Drims) through compacting and holistic curriculum among Malaysian gifted learners (Vol. 25). Retrieved from https://www.proquest.com/docview/2565217469

GRADUATE SCHOOL

Iloilo City

- 456
- Zeidan, A. H. & Joyosi, M. R. (2015). Science process skills and attitudes towards science among Palestinian school students. World Journal of Education, 13-25. https://doi.org/10.5430/wje.v5n1p13
- Zeni, A., & Komariah, A. (2020). Acceleration program management model in elementary school. , 258-262. https://doi.org/10.2991/assehr.k.200130.179.
- Ziegler, A., Chandler, K. L., Vialle, W., & Stoeger, H. (2017). Exogenous and endogenous learning resources in the actiotope model of giftedness and its significance for gifted education. Journal for the Education of the Gifted, 40(4), 310–333. https://doi.org/10.1177/0162353217734376
- Zhang, H., & Wu, X. (2015). Experimental research on reflection-based deep learning. . https://doi.org/10.2991/ICSSHE-15.2015.13.
- Zhong, B., & Si, Q. (2020). Troubleshooting to learn via scaffolds: Effect on students' ability and cognitive load in a robotics course. Journal of Educational Computing Research, 59, 95 118. https://doi.org/10.1177/0735633120951871.
- Zhou, C. (2015). Bridging Creativity and Group by Elements of Problem-Based Learning (PBL). In: Abraham, A., Muda, A., Choo, YH. (eds) Pattern Analysis, Intelligent Security and the Internet of Things. Advances in Intelligent Systems and Computing, vol 355. Springer, Cham. https://doi.org/10.1007/978-3-319-17398-6-1
- Zhou, Q., Luo, X., Dong, Y., Khalid, F., & Ma, H. (2022). The effectiveness of self-directed learning in developing computational thinking of middle school students.

GRADUATE SCHOOL

Iloilo City

Proceedings of the 14th International Conference on Education Technology and Computers. https://doi.org/10.1145/3572549.3572613.

- Zimlich, S.L. (2016). Motivating gifted students: Technology as a tool for authenticity and autonomy. International Journal of Learning, Teaching and Educational Research, 15.
- Zimlich, S.L. (2017). Technology to the rescue: Appropriate curriculum for gifted students. International Journal of Learning, Teaching and Educational Research, 16(9), 1-12. Educational Psychology Review, 33(2), 489-533. https://doi.org/10.1007/s10648-020-09534-0
- Zoirovna, N. Y. F. (2020). Ways to increase the prospects for youth participation in the innovation sphere of the country. *International Journal on Integrated Education*, *3*(12), 89–90. https://doi.org/10.31149/ijie.v3i12.926