Показать сокращенную информацию

dc.contributor.authorElijorde, Frank I.
dc.contributor.authorClarite, Denmar S.
dc.contributor.authorGerardo, Bobby D.
dc.contributor.authorByun, Yungcheol
dc.coverage.spatialIloiloen
dc.date.accessioned2024-05-02T07:15:34Z
dc.date.available2024-05-02T07:15:34Z
dc.date.issued2016
dc.identifier.citationElijorde, F. I., Clarite, D. S., Gerardo, B. D., & Byun, Y. C. (2016). Tracking and prediction of dengue outbreak using cloud-based services and artificial neural network. International Journal of Multimedia and Ubiquitous Engineering, 11(5), 355–366.en
dc.identifier.issn1975-0080
dc.identifier.urihttps://hdl.handle.net/20.500.14353/406
dc.description.abstractDengue is considered as one of the diseases which needs serious attention, especially in the less developed areas of the world. In order to allow sufficient time in taking necessary decisions and actions to safeguard the situation for local authorities, an accurate analysis of dengue epidemic seasons is crucial in preventing and counteracting its effect. To address the issue, this paper proposes a web-based dengue tracking system (DTS) that utilizes environmental factors in predicting the future behavior of dengue cases. The study aimed to track down and analyze the dengue cases that take place in the city of Iloilo, Philippines. The researchers used Artificial Neural Network for prediction based on the amount of rainfall, relative humidity, mean temperature, and monthly recorded cases. The system can serve a valuable purpose for the health sectors as it guides them to take action on recorded cases in areas which are prone to dengue. Through this, early detection and warning of dengue case growth can be monitored and preventive measures can be implemented immediately, thereby reducing the possibility of an outbreak.en
dc.description.sponsorshipThe authors would like to thank the rest of the development team (Charlyn Mae Centeno, Hannah Grace Gersalino, Rechelle Pabillo, and Lourlyn Rebuya) for their significant contributions to this study.en
dc.language.isoenen
dc.publisherScience and Engineering Research Support Societyen
dc.relation.urien
dc.subjectDecision Support Systemen
dc.subjectDengue Monitoringen
dc.subjectOutbreak Predictionen
dc.subjectHeat mapsen
dc.subjectArtificial Neural Networken
dc.subjectDisease outbreaken
dc.subjectCloud-based serviceen
dc.subjectWeb-based dengue tracking system (DTS)en
dc.subjectArea mappingen
dc.subjectDengue case mappingen
dc.subjectHotspot mappingen
dc.subjectTrends analysisen
dc.subjectWeather-based predictive methodsen
dc.subjectWeather-based dengue early warning systemen
dc.subjectTrackingen
dc.subject.lcshDengueen
dc.subject.lcshDengue--Preventionen
dc.subject.lcshNeural networks (Computer science)en
dc.subject.lcshDecision support systemsen
dc.subject.lcshAlgorithmsen
dc.subject.lcshEpidemicsen
dc.subject.lcshDengue--Diagnosisen
dc.subject.meshDengueen
dc.titleTracking and prediction of dengue outbreak using cloud-based services and artificial neural networken
dc.typeArticleen
dcterms.accessRightsOpen accessen
dc.citation.journaltitleInternational Journal of Multimedia and Ubiquitous Engineeringen
dc.citation.volume11en
dc.citation.issue5en
dc.citation.firstpage355en
dc.citation.lastpage366en
local.subject.scientificnameAedes aegyptien
dc.identifier.doi10.14257/ijmue.2016.11.5.33
local.isIndexedByScopusen


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать сокращенную информацию