Analysis of students’ borrowing behavior in local university library using data mining technique
dc.contributor.author | Wei, Yang | |
dc.contributor.author | Machica, Ivy Kim | |
dc.contributor.author | Arroyo, Jan Carlo T. | |
dc.contributor.author | Sabayle, Ma. Luche P. | |
dc.contributor.author | Delima, Allemar Jhone | |
dc.date.accessioned | 2025-05-13T07:45:06Z | |
dc.date.available | 2025-05-13T07:45:06Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Wei, Y., Machica, I. K. D., Arroyo, J. C. T., Sabayle, M. L. P., & Dilemma, A. J. P., (2022). Analysis of students’ borrowing behavior in local university library using data mining technique. International Journal of Emerging Technology and Advanced Engineering, 12(07), 1-10 | en |
dc.identifier.uri | https://hdl.handle.net/20.500.14353/797 | |
dc.description | Full-text | en |
dc.description.abstract | This paper analyzes the reader's borrowing behavior data using data mining technique specifically K-Means algorithm and finds the hidden user borrowing characteristics and demand preference information. The dataset used in the study is based on the borrowing behavior data of readers in the library automatic management system of the university. Moreover, this paper discusses the use of K-means cluster analysis method in data mining technology to analyze and mine them and finds the readers' reading tendency and personal interest information, in order to provide reference for the development of personalized active service and the optimal allocation of collection resources. | en |
dc.language.iso | en | en |
dc.publisher | IJETAE Publication House | en |
dc.relation.uri | https://ijetae.com/files/Volume12Issue7/IJETAE_0722_07.pdf | en |
dc.subject | Borrowing behavior | en |
dc.subject | K-means clustering algorithm | en |
dc.subject | University library | en |
dc.subject | Automatic management system | en |
dc.subject | Database knowledge | en |
dc.subject.lcsh | Data mining | en |
dc.subject.lcsh | Data mining--Statistical methods | en |
dc.subject.lcsh | Library statistics | en |
dc.subject.lcsh | Machine learning | en |
dc.subject.lcsh | Big data | en |
dc.subject.lcsh | Library research | en |
dc.subject.lcsh | Integrated library systems (Computer systems) | en |
dc.title | Analysis of students’ borrowing behavior in local university library using data mining technique | en |
dc.type | Article | en |
dcterms.accessRights | Open access | en |
dc.citation.journaltitle | International Journal of Emerging Technology and Advanced Engineering | en |
dc.citation.volume | 12 | en |
dc.citation.issue | 07 | en |
dc.citation.firstpage | 68 | en |
dc.citation.lastpage | 77 | en |
dc.identifier.essn | 2250-2459 | |
dc.identifier.doi | 10.46338/ijetae0722_07 | |
local.isIndexedBy | Scopus | en |
dc.subject.sdg | SDG 9 - Industry, innovation and infrastructure | en |
Dateien zu dieser Ressource
Das Dokument erscheint in:
-
Journal articles published externally [120]
Journal articles published externally, written by WVSU faculty members, staff, and students