Show simple item record

dc.contributor.authorWei, Yang
dc.contributor.authorMachica, Ivy Kim
dc.contributor.authorArroyo, Jan Carlo T.
dc.contributor.authorSabayle, Ma. Luche P.
dc.contributor.authorDelima, Allemar Jhone
dc.date.accessioned2025-05-13T07:45:06Z
dc.date.available2025-05-13T07:45:06Z
dc.date.issued2022
dc.identifier.citationWei, Y., Machica, I. K. D., Arroyo, J. C. T., Sabayle, M. L. P., & Dilemma, A. J. P., (2022). Analysis of students’ borrowing behavior in local university library using data mining technique. International Journal of Emerging Technology and Advanced Engineering, 12(07), 1-10en
dc.identifier.urihttps://hdl.handle.net/20.500.14353/797
dc.descriptionFull-texten
dc.description.abstractThis paper analyzes the reader's borrowing behavior data using data mining technique specifically K-Means algorithm and finds the hidden user borrowing characteristics and demand preference information. The dataset used in the study is based on the borrowing behavior data of readers in the library automatic management system of the university. Moreover, this paper discusses the use of K-means cluster analysis method in data mining technology to analyze and mine them and finds the readers' reading tendency and personal interest information, in order to provide reference for the development of personalized active service and the optimal allocation of collection resources.en
dc.language.isoenen
dc.publisherIJETAE Publication Houseen
dc.relation.urihttps://ijetae.com/files/Volume12Issue7/IJETAE_0722_07.pdfen
dc.subjectBorrowing behavioren
dc.subjectK-means clustering algorithmen
dc.subjectUniversity libraryen
dc.subjectAutomatic management systemen
dc.subjectDatabase knowledgeen
dc.subject.lcshData miningen
dc.subject.lcshData mining--Statistical methodsen
dc.subject.lcshLibrary statisticsen
dc.subject.lcshMachine learningen
dc.subject.lcshBig dataen
dc.subject.lcshLibrary researchen
dc.subject.lcshIntegrated library systems (Computer systems)en
dc.titleAnalysis of students’ borrowing behavior in local university library using data mining techniqueen
dc.typeArticleen
dcterms.accessRightsOpen accessen
dc.citation.journaltitleInternational Journal of Emerging Technology and Advanced Engineeringen
dc.citation.volume12en
dc.citation.issue07en
dc.citation.firstpage68en
dc.citation.lastpage77en
dc.identifier.essn2250-2459
dc.identifier.doi10.46338/ijetae0722_07
local.isIndexedByScopusen
dc.subject.sdgSDG 9 - Industry, innovation and infrastructureen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record