Показать сокращенную информацию

dc.contributor.authorGamao, Ariel O.
dc.contributor.authorGerardo, Bobby D.
dc.coverage.spatialDavaoen
dc.coverage.spatialDavaoen
dc.date.accessioned2022-03-28T08:02:29Z
dc.date.available2022-03-28T08:02:29Z
dc.date.issued2019
dc.identifier.citationGamao, A. O., Gerardo, B. D., & Medina, R. P. (2019). Prediction-based model for student dropouts using modified mutated firefly algorithm. International Journal of Advanced Trends in Computer Science and Engineering, 8(6), 3461-3469.en
dc.identifier.issn2278-3091
dc.identifier.urihttp://repository.wvsu.edu.ph/handle/123456789/92
dc.description.abstractAcademic database is considered as the heart and soul of every higher education institutions. This database contains a vast amount of useful information that is useful for analysis. Algorithms for machine learning play a significant role in mining academic databases and have been proven to be effective when applied in the academic field. Prediction models are made using relevant classification algorithms for dropout analysis. The success of the prediction model depends on the performance of the feature selection algorithm used for dimensionality reduction. The study utilized the Modified Mutated Firefly Algorithm (MMFA) as a dimensionality reduction strategy to enhance the accuracy of the prediction model for dropout analysis. The results of the simulation revealed that the Decision Tree (DT) classifier outperformed the Naïve Bayesian using the three UCI datasets. After the test of benchmark datasets, a students' cumulative dataset was used to come up with a predictive model for dropout analysis of Davao del Norte State College, Davao del Norte, Philippines. The results of the experiment confirmed that the MMFA+DT obtained an accuracy rate of 95.82%, while MMFA+NB only has 92.85% using 10-fold cross-validation.en
dc.language.isoenen
dc.publisherWorld Academy of Research in Science and Engineeringen
dc.relation.urien
dc.subjectDropout analysisen
dc.subjectFirefly algorithmen
dc.subjectMutation processen
dc.subjectStochastic approachen
dc.subjectPrediction modelen
dc.subject.lcshAlgorithmsen
dc.subject.lcshDatabasesen
dc.subject.lcshStochastic approximation--Data processingen
dc.subject.lcshData miningen
dc.subject.lcshClassification--Data processingen
dc.subject.lcshStochastic analysis--Computer programsen
dc.subject.lcshMutation testing of computer programsen
dc.subject.lcshDropoutsen
dc.subject.lcshCollege dropoutsen
dc.subject.lcshDropouts--Preventionen
dc.subject.lcshDropout behavior, Prediction ofen
dc.titlePrediction-based model for student dropouts using modified mutated firefly algorithmen
dc.typeArticleen
dcterms.accessRightsLimited public accessen
dc.citation.journaltitleInternational Journal of Advanced Trends in Computer Science and Engineeringen
dc.citation.volume8en
dc.citation.issue6en
dc.citation.firstpage3461en
dc.citation.lastpage3469en
dc.identifier.essn2278 - 3091
dc.identifier.doihttps://doi.org/10.30534/ijatcse/2019/122862019
local.isIndexedByScopusen


Файлы в этом документе

Thumbnail

Данный элемент включен в следующие коллекции

Показать сокращенную информацию